Attention eLearning Users

We are upgrading our learning platform! As a result, if you have a course in progress, you'll need to complete it by December 24, 2021. Otherwise, you will need to restart the course beginning January 5, 2022 on our new platform. Repurchasing will not be necessary. Contact customer service with any questions.

Using Discrete Element Simulations to Predict the Large By Understanding the Small

Source: AIChE
  • Checkout

    Checkout

    Do you already own this?

    Pricing


    Individuals

    AIChE Member Credits 0.5
    AIChE Members $19.00
    AIChE Graduate Student Members Free
    AIChE Undergraduate Student Members Free
    Non-Members $29.00
  • Type:
    Conference Presentation
  • Conference Type:
    AIChE Annual Meeting
  • Presentation Date:
    November 20, 2020
  • Duration:
    16 minutes
  • Skill Level:
    Intermediate
  • PDHs:
    0.30

Share This Post:

Particle flows are ubiquitous in nature (e.g., avalanches, volcanic eruptions, and planetary rings) and are common in processes used by a wide range of industries, such as energy, agriculture, and chemical processing. Despite the prevalence of processes involving particle transport, the behavior of flowing particles is often poorly understood, and improved predictive capabilities are needed. Particle flows tend to be chaotic, and subtleties that occur at small length scales (e.g., a single particle) can significantly impact large-scale flow behavior. As such, empirical tools can be unreliable when extrapolated to new systems, and fundamental modeling approaches will play a key role in developing better design tools that do not rely solely on costly experimentation. This presentation will discuss two applications of discrete element simulations. In the first application, discrete element simulations are used to elucidate heat transfer mechanisms to flowing particles and develop continuum closures suitable for modeling large scale systems. In the second application, discrete element simulations are used to help develop a kinetic theory for complex granular flows with non-spherical particles.
Presenter(s): 
Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.

Checkout

Checkout

Do you already own this?

Pricing


Individuals

AIChE Member Credits 0.5
AIChE Members $19.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
Non-Members $29.00
Language: