Limited Time Offer

Claim a 40% discount on your eLearning courses and webinars purchases with code DEALS40.

Offer is valid from November 21-28. Offer excludes instructor-led courses and credential programs.

Protein Based Biomimetic Materials

  • Type:
    Conference Presentation
  • Checkout

    Checkout

    Do you already own this?

    Pricing


    Individuals

    AIChE Member Credits 0.5
    AIChE Members $19.00
    AIChE Graduate Student Members Free
    AIChE Undergraduate Student Members Free
    Non-Members $29.00
  • Conference Type:
    AIChE Annual Meeting
  • Presentation Date:
    November 9, 2021
  • Duration:
    36 minutes
  • Skill Level:
    Intermediate
  • PDHs:
    0.50

Share This Post:

Self-assembling proteins are valuable building blocks allowing the construction of materials with versatile chemical properties and functions based on their tertiary and quaternary protein structures. Well-studied motifs from tandem repeat proteins (such as silk, elastin, collagen, keratin, resilin, and squid ring teeth-SRT) have been frequently used in combination to create multifunctional materials for diverse applications. Besides their extraction from natural sources, these biopolymers are produced using genetically modified organisms. Such materials and their engineered derivatives via directed evolution can exhibit extraordinary physical responses that have not been observed in synthetic or inorganic materials. Those properties and responses selected via directed evolution can play significant roles in achieving novel functionalities and fabricating various devices. In the last decade, we discovered that tandem repeat biopolymers can be tuned for predefined macroscopic symmetries, which cannot be obtained in traditional materials engineering, by controlling their packing symmetry or order during assembly. In this talk, we review programmable design, structure, and properties of functional fibers and films from squid-inspired tandem repeat proteins, for the design of thermal, structural and optical biological materials [1-3].

[1] Jung et al., Proceedings of the National Academy of Sciences. 2016; 113 (23),6478-83

[2] Tomko et al., Nature nanotechnology. 2018; 13 (10), 959-964

[3] Francesch et al., Nature Materials, 2020; 19 (11), 1230-1235

Presenter(s): 
Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.

Checkout

Checkout

Do you already own this?

Pricing


Individuals

AIChE Member Credits 0.5
AIChE Members $19.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
Non-Members $29.00
Language: