Full Potential Conversion of Vacuum Resids

Source: AIChE
  • Type:
    Conference Presentation
  • Conference Type:
    AIChE Spring Meeting and Global Congress on Process Safety
  • Presentation Date:
    March 23, 2010
  • Duration:
    30 minutes
  • Skill Level:
  • PDHs:

Share This Post:

Present vacuum resid conversion processes, either coking or hydroconversion, are far from achieving their maximum conversion. With the remaining petroleum resources, on average, having a greater fraction of the vacuum resid fraction, it is imperative that new resid conversion processes or schemes be developed to approach their full potential. Coking processes are limited by degrading the higher quality fractions of the vacuum resid and by secondary cracking of volatile liquid products to form hydrocarbon gases. Therefore, coking processes can be improved by separating the higher quality fraction of the vacuum resid, such as by deasphalting, prior to coking and by doing the coking in a reactor with a short vapor phase residence time but a long resid/coke residence time. In this way the laboratory coking of Arabian Heavy vacuum resid increased the yield of nearly equal quality liquid product to 76 wt% as compared with a commercial yield of 61 wt% while reducing the coke yield to less than Conradson carbon residue.

Ebullating bed hydroconversion processes, H-Oil and LC-Fining, are limited by the formation of asphaltene sediments in the heavy oil product. This limitation can be overcome by reducing the conversion per pass and deasphalting the heavy product into deasphalted oil, resin, and asphalt fractions. The deasphalted oil is added to the vacuum gas oil product and the asphalt is a heavy, aromatic byproduct. Meanwhile, the resins are recycled for further conversion.

Once dispersed catalyst hydroconversion processes are designed to overcome their compatibility limitation by more efficiently stripping out the volatile liquid product, they can produce greater than 100 vol% liquid product. However, the economic optimum conversion is more likely at lower conversion but greatly depends on the local economics.

This recording is FREE to members of the Fuels and Petrochemicals Division of AIChE. AIChE members may join the Division for only $10. Join F&PD now and return to this page with your new log-in and you will receive this presentation for FREE.

F&PD Members: Simply click on “click here to buy this archived webcast ” below and your ‘0’ price will appear in your shopping cart.

Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.



Do you already own this?



AIChE Member Credits 0.5
AIChE Members $15.00
AIChE Fuels and Petrochemicals Division Members Free
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
Non-Members $25.00