Development and Deployment of NETs

- Type: Archived Webinar
- Level: Intermediate
- Duration: 1 hour
Worldwide energy demand is projected to grow strongly in the coming decades, with most of the growth in developing countries. Even with unprecedented growth rates in the development of renewable energy technologies such as solar, wind and bioenergy, the world will continue to rely on fossil fuels as the predominant energy source for at least the next several decades. Simultaneously, due to decades of inaction, most current climate models suggest that limiting warming to <2°C will require large scale deployment of negative emissions technologies (NETs). NETs, which remove CO2 from the atmosphere, are projected to be needed at a scale of 10 Gt/y by 2050, yet today, virtually none have been deployed.1 NETs may be natural or technological, with one of the most scalable technological approaches being the direct capture of CO2 from the air, or “direct air capture” (DAC).2 Because of the ultra-dilute nature of air, the separation of CO2 from this mixture presents a significant engineering challenge.
In this lecture, Dr. Jones will describe the design and synthesis, characterization and application of new supported amine materials that we have developed as cornerstones of new technologies for the removal of CO2 from dilute (flue gas) and ultra-dilute (air) gas streams.3 These chemisorbents efficiently remove CO2 from simulated flue gas streams, and the CO2 capacities are actually enhanced by the presence of water, unlike in the case of physisorbents such as zeolites. We will describe the development of these materials, how they integrate into scalable DAC technologies, as well as their key physicochemical structure-property relationships. DAC technologies offer an interesting case study for the parallel design of materials, unit operations, and processes in chemical engineering.
- https://nas-sites.org/dels/studies/cdr/
- “Direct Capture of CO2 from Ambient Air.” E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas, C. W. Jones, Chemical Reviews, 2016, 116, 11840-11876.
- “Amine-Oxide Hybrid Materials for CO2 Capture from Ambient Air.” S. A. Didas, S. Choi, W. Chaikittisilp, C. W. Jones, Accounts of Chemical Research, 2015, 48, 2680-2687.
Christopher W. Jones
Chris holds a BSE in chemical engineering at the University of Michigan (1995), an MS (1997) and PhD (1999) from Caltech. Most recently, Chris was named the Associate Vice President for Research at Georgia Tech. Dr. Jones directs a vigorous research program focused primarily on catalysis and CO2 separation, sequestration and utilization.Read more
Pricing
Individuals
AIChE Member Credits | 1 |
AIChE Members | $69.00 |
AIChE Graduate Student Members | Free |
AIChE Undergraduate Student Members | Free |
Catalysis and Reaction Engineering Division Members | Free |
Non-Members | $99.00 |