Limited Time Offer

Claim a 25% discount on all eLearning courses (including credentials) with code ELEARN25.

Offer is valid from March 10-31. Public courses excluded from promo. 

Using the STAMP Systems-Based Approach to Identify Hazards for the Transient Operating State: What Is It and How Can It Help Us?

  • Type:
    Conference Presentation
  • Checkout

    Checkout

    Do you already own this?

    Pricing


    Individuals

    AIChE Member Credits 0.5
    AIChE Members $19.00
    Employees of CCPS Member Companies Free
    AIChE Graduate Student Members Free
    AIChE Undergraduate Student Members Free
    Non-Members $29.00
  • Conference Type:
    AIChE Spring Meeting and Global Congress on Process Safety
  • Presentation Date:
    April 12, 2022
  • Duration:
    30 minutes
  • Skill Level:
    Intermediate
  • PDHs:
    0.50

Share This Post:

STAMP (Systems Theoretic Accident Model and Processes) is a relatively new accident causality model based on systems theory. It draws its main tenets from systems thinking that (1) accidents can happen even when there has been no failure, (2) that interactions between components of the system create emergent properties that can lead to failure, and (3) it treats accidents as a control problem rather than a failure problem. STPA (Systems Theoretic Process Analysis) or colloquially “Stuff That Prevents Accidents” is a powerful hazard analysis technique based on STAMP. The STPA technique is based on a control structure rather than a traditional hardware-based structure as typically shown on a P&ID (Piping & Instrumentation Diagram). STPA is not so concerned with identifying component failures, but rather how those components interact and what controls or constraints are placed on the interactions that can lead to hazards.

The STPA technique is a good fit for identifying the ways hazards can arise during transient operating states such as maintenance, start-up, or response to abnormal situation. It identifies unsafe or missing controls related to the transient mode needed to prevent an accident. It works off of a control structure of the transient mode versus procedures or P&IDs. A typical control structure can include components, humans, software, requirements, expectations (written and unwritten). Traditional PHA (Process Hazards Analysis) methods such as HAZOP or What-if will not provide the same perspective.

This paper will provide two examples of transient mode control structures, one for maintenance and one for response to abnormal situation, and show how to perform the STPA hazard analysis on those control structures to ensure the proper controls and constraints are identified to prevent an unwanted event.

Presenter(s): 
Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.

Checkout

Checkout

Do you already own this?

Pricing


Individuals

AIChE Member Credits 0.5
AIChE Members $19.00
Employees of CCPS Member Companies Free
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
Non-Members $29.00
Language: