Tailored Redox Catalysts for Methane Partial Oxidation

Developed by: AIChE
  • Type:
    Conference Presentation
  • Conference Type:
    AIChE Annual Meeting
  • Presentation Date:
    November 5, 2013
  • Duration:
    15 minutes
  • Skill Level:
    Intermediate
  • PDHs:
    0.50

Share This Post:

Methane is commercially used as a feedstock for producing hydrogen and liquid transportation fuels via reforming processes. Although a large number of reforming catalysts have been investigated and commercially utilized , deactivation of reforming catalysts remains as a challenge for the development of more effective catalysts. In the current study , we report a “core-shell” redox catalyst that is both an active reforming catalyst and an effective lattice oxygen (O2-) donor for methane reforming. Compared to the conventional reforming processes , the proposed redox catalyst is potentially beneficial since the embedded O2- allows effective oxidation of methane without the presence of external oxidants such as steam or oxygen , avoiding the energy intensive air separation step. The active O2- also inhibits coke formation , allowing a high syngas selectivity without using steam. After O2- donation , the oxygen depleted catalyst can be easily regenerated with steam and/or air. A number of redox catalysts composed of a primary metal oxide and mixed ionic-electronic conductor (MIEC) , are synthesized , characterized , and tested under redox conditions. Results indicate that the newly developed core-shell redox catalyst is significantly more selective than conventional oxygen carriers for syngas production. It also exhibits better carbon formation resistance and maintained structural/phase integrity.

Presenter(s): 
Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.

Checkout

Checkout

Do you already own this?

Log In for instructions on accessing this content.

Pricing

AIChE Member Credits 0.5
AIChE Members $15.00
AIChE Undergraduate Student Members Free
AIChE Graduate Student Members Free
Non-Members $25.00