Academy Offers

Get a 20% discount on eLearning course purchases made through July 31. Use code ACADEMY20 at check out.

Through June 30, AIChE members will receive complimentary, unlimited access to live and on-demand AIChE webinars by purchasing them with their newly increased number of credits. See more resources.

Supported Ionic Liquid Phase (SILP) Catalysts for Ambient Pressure and Ultra-Low Temperature Water-Gas-Shift Reaction

Source: AIChE
  • Type:
    Conference Presentation
  • Conference Type:
    AIChE Annual Meeting
  • Presentation Date:
    November 6, 2013
  • Duration:
    15 minutes
  • Skill Level:
  • PDHs:

Share This Post:

Supported ionic liquid phase (SILP) catalysts are new materials consisting of an ionic liquid , a metal catalyst and a porous support. The catalyst is dissolved in the ionic liquid which itself is dispersed as a thin film on the inorganic support , thus bridging the gap between traditional homogeneous and heterogeneous catalysis.[1] Especially continuous , gas-phase reactions are highly suited for this novel and innovative technology. An industrially important example is the water gas shift (WGS) reaction , by which hydrogen can be generated from carbon monoxide and water. Homogeneous WGS catalysts operate at milder temperatures than commercial heterogeneous systems. Since hydrogen production via WGS is an exothermic reaction , lower temperatures result in higher equilibrium conversions.[2] In this contribution we present investigations of homogeneous metal complexes active in the water gas shift reaction which have been immobilized by the SILP technique. The investigated SILP systems exhibit activities and stabilities exceeding those of homogenous systems reported in literature.[3] Even commercially available WGS catalysts are outperformed , indicating that SILP derived WGS catalysts may become a promising alternative to conventional heterogeneous systems. [1]      a) Riisager , A.; Fehrmann , R.; Flicker , S.; van Hal , R.; Haumann , M.; Wasserscheid , P. Angew. Chem. Int. Ed. 2005 , 44 , 185; b) Riisager , A.; Fehrmann , R.; Haumann , M.; Wasserscheid , P. Eur. J. Inorg. Chem. 2006 , 695. [2]      Laine , R.M.; Crawford , E.J.; J. Mol. Cat. 1988 , 44 , 357. [3]      a) Werner , S.; Szesni , N.; Kaiser , M.; Fischer , R.W.; Haumann , M. Wasserscheid , P. ChemCatChem. 2010 , 2 , 1399; b) M. Haumann , A. Schönweiz , H. Breitzke , G. Buntkowsky , S. Werner , N. Szesni , Chem. Eng. Technol. 2012 , 35 , 1421; c) S. Werner , N. Szesni , M. Kaiser , M. Haumann , P. Wasserscheid , Chem. Eng. Technol. 2012 , 35 , 1962.

Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.



Do you already own this?



AIChE Member Credits 0.5
AIChE Members $15.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
Non-Members $25.00