Academy Offer

Extended to August 15

Claim a 20% discount on all eLearning and virtual courses purchases with code EDU20OFF.

This promotion does not apply to the credential programs.

Strong sp-D Orbital Hybridization Driven Pt-Graphene Hybrid Catalysts for Direct CO2 Hydrogenation to Formic Acid

  • Checkout

    Checkout

    Do you already own this?

    Pricing


    Individuals

    AIChE Member Credits 0.5
    AIChE Members $19.00
    AIChE Graduate Student Members Free
    AIChE Undergraduate Student Members Free
    Non-Members $29.00
  • Type:
    Conference Presentation
  • Conference Type:
    AIChE Annual Meeting
  • Presentation Date:
    November 8, 2021
  • Duration:
    25 minutes
  • Skill Level:
    Intermediate
  • PDHs:
    0.50

Share This Post:

Formic acid (FA) is one of the most promising compounds for hydrogen storage for its high hydrogen density, non-toxicity, and great stability under ambient conditions, which can be made from CO2. Although the noble metal or alloy catalysts have validated their outstanding activity to the dehydrogenation of FA into H2 and CO2, the hydrogenation of CO2 towards FA is relatively difficult due to the nature of relatively weak CO2 ­adsorption compared with HCOO adsorption on the metal surfaces. Indeed, thermal CO2 hydrogenation to FA has been a challenge for a decade since thermal CO2 hydrogenation is endothermic process. Therefore, the efficient transformation of CO2 into renewable energy sources such as FA is a crucial for further development of new energy technology. In this study, we investigate the CO2 hydrogenation towards FA at ambient temperature on a new Pt-Graphene hybrid catalyst using DFT method. This new Pt-Graphene hybrid catalyst consists of Pt monolayer and graphene via hybridizing sp and d orbitals between carbon and Pt atoms. The sp-d hybridization significantly reduces the local density of states of d-band and at the same time increases s-band near the Fermi level which leads to the strong chemisorption of CO2 at the Pt surface. From our DFT calculations, it is discovered that the CO2 hybridization towards FA is exothermic reaction on Pt-Graphene catalyst. Furthermore, the microkinetic modeling is implemented to identify overall turnover frequencies. By analyzing various metal-Graphene hybrid catalysts, we will also address physical and chemical intuition for the design of new hybrid catalysts.
Presenter(s): 
Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.

Checkout

Checkout

Do you already own this?

Pricing


Individuals

AIChE Member Credits 0.5
AIChE Members $19.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
Non-Members $29.00
Language: