Multi-Scale Study On the Pyrolysis of Sustainable Biomass Feedstock

  • Type:
    Conference Presentation
  • Conference Type:
    AIChE Annual Meeting
  • Presentation Date:
    October 16, 2011
  • Skill Level:
  • PDHs:

Share This Post:

Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.

Multi-Scale Study on the Pyrolysis of Sustainable Biomass Feedstock

Jessica D. Murillo

Department of Chemistry, Environmental Sciences, Tennessee Technological University, Cookeville, TN 38505

Joseph J. Biernacki

Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505

C. Pat Bagley

College of Agricultural and Human Sciences, Tennessee Technological University, Cookeville, TN 38505

Pyrolysis of lignocellulosic material for the production of biofuels and value-added products offers a short- to long-term renewable energy option to help curb fossil fuel use, gain energy independence, and mitigate global climate change. The main components of lignocellulsic material are cellulose, hemicellulose and lignin; however, there are many issues with using such a complex chemical feedstock for the production of renewable fuels. During pyrolysis the main components degrade via primary and secondary reactions, producing a spectrum of products, including volatiles, char, and bio-oil. To gain a more complete understanding of the pyrolytic behavior of lignocellulosic biomass, a deeper knowledge of the morphology and chemical structure is required.

Preliminary meso-scale experimental results from the pyrolysis of tall fescue hay, sorghum-sudangrass, Bermuda grass, switchgrass, and alfalfa hay, have paved the way for study at microscopic lengths. The physical and chemical characteristics of each grass hay was studied using X-ray diffraction, mid-infrared spectroscopy (MIR) and electron scanning microscopy to determine the microstructure and to quantify the content of lignin, cellulose, and hemicelluloses. Comparison studies on the reaction kinetics of grass samples and isolated pseudo-components were performed using thermogravimetric analysis (TGA).




Do you already own this?

Log In for instructions on accessing this content.


AIChE Member Credits 0.5
AIChE Members $15.00
AIChE Undergraduate Student Members Free
AIChE Graduate Student Members Free
Non-Members $25.00