Limited Time Offer

Claim a 25% discount on your eLearning and instructor-led courses purchases with code EDU25OFF.

Offer is valid from October 1-31. Exclusions may apply.

Machine Learning Guided Synthesis of Multinary Chevrel Phases for Tunable Energy Materials

  • Type:
    Conference Presentation
  • Checkout

    Checkout

    Do you already own this?

    Pricing


    Individuals

    AIChE Member Credits 0.5
    AIChE Members $19.00
    AIChE Graduate Student Members Free
    AIChE Undergraduate Student Members Free
    Non-Members $29.00
  • Conference Type:
    AIChE Annual Meeting
  • Presentation Date:
    November 17, 2021
  • Duration:
    20 minutes
  • Skill Level:
    Intermediate
  • PDHs:
    0.50

Share This Post:

The Chevrel phase (CP) is an inorganic family of molybdenum chalcogenides that have demonstrated great promise as advanced battery materials, artificial solid-electrolyte interphases and electrocatalysts for hydrogen evolution and CO2 reduction. Multinary CPs comprise a vast compositional space with many thousands of theoretical members and varying these CP compositions can enable the precise tuning of electronic and thermodynamic properties that are relevant to energy applications. However, despite their promise as energy materials and the importance of understanding the range of synthesizable phases, CPs are underexplored with only ~100 synthesized compositions due to the challenge of identifying synthesizable phases. To catalyze the growth of this promising material class, we developed an interpretable machine-learned descriptor (Hδ) that rapidly and accurately estimates CP decomposition enthalpies (ΔHd). Hδ was developed using ΔHd values for 438 CP compositions computed with the accurate SCAN density functional. We developed and applied the new symbolic regression with intermediate feature trimming (SIFT) machine learning method, which provides an easy-to-use approach for rapidly developing accurate and interpretable chemical models. SIFT was used to generate over 560,000 descriptors of CP ΔHd, of which Hδ yielded the highest accuracy. We applied Hδ alongside data-driven boundaries for ΔHd that bracket stable and persistently metastable materials to identify over 2,000 CP compositions that are predicted to be synthesizable. 5/5 novel CP tellurides attempted from this set were experimentally synthesized, doubling the known space of this CP subset. We expect Hδ to catalyze the discovery of new CPs and to facilitate further development of CP design criteria that correlate composition and functionality in relevant energy applications. Furthermore, our computational approach for developing screening tools that enable the rapid identification of synthesizable materials is transferrable to other materials families to accelerate their discovery.
Presenter(s): 
Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.

Checkout

Checkout

Do you already own this?

Pricing


Individuals

AIChE Member Credits 0.5
AIChE Members $19.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
Non-Members $29.00
Language: