Exploiting Equilibrium Properties for Assembly of Core/Shell-Like Compound Semiconductor Nanocrystals

Developed by: AIChE
  • Type:
    Conference Presentation
  • Conference Type:
    AIChE Annual Meeting
  • Presentation Date:
    November 9, 2010
  • Skill Level:
  • PDHs:

Share This Post:

Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.
Typical synthesis of core/shell nanostructures involves a rigorous two-step protocol. It is common to synthesize the semiconducting core first, followed by the overgrowth of a thin shell of a different band-gap material. The few attempted single-step and one-pot synthesis approaches have been limited in their use and specific to the type of precursors involved. The core/shell nanocrystals prepared by over-coating methods enclose interfaces of lattice-mismatched core and shell regions that lead to undesirable misfit strain and defect-induced states in the band gap. Motivated by the need for single-step synthesis routes to design minimally strained core/shell-like nanostructures, we study the equilibrium properties of a prototypical ternary compound semiconductor nanocrystal system, emphasizing on equilibrium surface segregation, as a potential means to self-assemble core/shell-like semiconductor quantum dots.



Do you already own this?

Log In for instructions on accessing this content.


AIChE Member Credits 0.5
AIChE Members $15.00
AIChE Undergraduate Student Members Free
AIChE Graduate Student Members Free
Non-Members $25.00