Bifunctional Catalysts With Improved Hydrothermal Stability for the Hydrolytic Hydrogenation of Cellulose

Developed by: AIChE
  • Type:
    Conference Presentation
  • Conference Type:
    AIChE Annual Meeting
  • Presentation Date:
    November 6, 2013
  • Duration:
    15 minutes
  • Skill Level:
    Intermediate
  • PDHs:
    0.50

Share This Post:

The production of glucose and/or sorbitol from the hydrolytic hydrogenation of cellulose , offers the potential to be used as a renewable feedstock in a biorefinery for the production of fuels and value added chemicals. Here we report the results of the study of the effect of cellulose crystallinity , cellulose/catalyst ratio , reaction temperature and reaction time on the catalytic performance for the conversion of cellulose into sorbitol.  We studied a series of single , binary and ternary metal oxide supports with a range of surface acidity and phosphated niobic acid.  Ru was supported using evaporative deposition on the supports.  The catalytic materials were characterized using nitrogen adsorption , X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR).  Ruthenium supported on NbOPO4 displayed the best catalytic performance with hexitols yields of about 45% at 100% cellulose conversion.  All materials suffer a decrease in their surface areas after treatment in hot water.  However , treating Ru/NbOPO4 in water at 210°C and 230 °C and 35 bar H2 for 24 h or 48 h caused a slight decrease in cellulose conversion , but a significant increase in hexitol and hydrogenolysis products yield.  Ru/Nb2O5 (HY 340) and the equivalent amount of phosphoric acid present in Ru/NbOPO4 give essentially the same conversion as Ru/NbOPO4 but a lower yield to sugar alcohols and a higher yield to hydrogenolysis products.  Decreasing cellulose crystallinity and cellulose/catalyst ratio , increases the cellulose conversion and hexitols yield for Ru/NbOPO4.

Presenter(s): 
Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.

Checkout

Checkout

Do you already own this?

Log In for instructions on accessing this content.

Pricing

AIChE Member Credits 0.5
AIChE Members $15.00
AIChE Fuels and Petrochemicals Division Members Free
AIChE Undergraduate Student Members Free
AIChE Graduate Student Members Free
Non-Members $25.00