Important Notice: Limited Web Access September 17 to 19, 2021

AIChE will undertake a routine upgrade of our digital infrastructure this weekend between 4pm ET Friday afternoon and 4pm ET Sunday afternoon. During this period access to all services that require login or payment will be limited.

Application of Biophysical and Chemical Engineering Principles for Understanding Molecular Scale Interactions Critical to Virus Entry and Infection of Its Host

Source: AIChE
  • Checkout

    Checkout

    Do you already own this?

    Pricing


    Individuals

    AIChE Member Credits 0.5
    AIChE Members $19.00
    AIChE Graduate Student Members Free
    AIChE Undergraduate Student Members Free
    Non-Members $29.00
  • Type:
    Conference Presentation
  • Conference Type:
    AIChE Annual Meeting
  • Presentation Date:
    November 18, 2020
  • Duration:
    19 minutes
  • Skill Level:
    Intermediate
  • PDHs:
    0.30

Share This Post:

The coronavirus disease 2019 (COVID-19) pandemic has focused attention on the need to develop effective therapies against the causative agent, SARS-CoV-2, and also against other pathogenic coronaviruses (CoV) that have emerged in the past or might appear in future. Focusing on steps in the CoV replication cycle, in particular the entry steps involving membrane fusion that are vulnerable to inhibition by broad-spectrum or specific antiviral agents, is an astute choice because of the conserved nature of the fusion machinery and mechanism across the CoV family. For coronavirus, entry into a host cell is mediated by a single glycoprotein protruding from its membrane envelope, called spike (S). Within S, the region that directly interacts with the membrane is called the fusion peptide, FP. It is the physico-chemical interactions of the FP with the host membrane that anchors it, thus enabling the necessary deformations of the membrane that lead to delivery of the viral genome into the cell when a fusion pore opens. As chemical engineers, we contribute to this fundamental work by leveraging our understanding of thermodynamics, kinetics, and intermolecular interactions to describe FP interactions with the host membrane at the most fundamental molecular level to facilitate the development of strategies to limit those interactions to stop the spread of infection. In this talk, I will describe our work on understanding the impact of calcium ions on CoV infection. Using cell infectivity, biophysical assays, and spectroscopic methods, we found that calcium ions serve to stabilize the fusion peptide structure during conformational change that then allows its insertion into the host membrane, resulting in increased lipid ordering in the membrane. This lipid ordering precedes membrane fusion and has been shown to correlate with increased fusion activity, as higher extents of fusion are observed as calcium concentration increases, aligned with higher levels of infection in the presence of calcium. Finally, depletion of calcium ions leads to structure and activity changes that correlate well with in vitro experiments using calcium-chelating drugs. Under these conditions, cell infection dropped, pointing to the possibility of such drugs as therapeutic interventions.
Presenter(s): 
Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.

Checkout

Checkout

Do you already own this?

Pricing


Individuals

AIChE Member Credits 0.5
AIChE Members $19.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
Non-Members $29.00
Language: