| AIChE

Modular Conversion of Stranded Ethane to Liquid Fuels

Ethane can represent up to 20 vol.% of shale-gas, exceeding the 10 vol. % allowed in “pipeline-quality” natural gas. Each year, over 210 million barrels (liquid equivalent) of ethane are rejected in the lower 48 states. Upgrading low- to negative-value ethane to easily transportable liquid fuels is a promising solution to this supply glut. The key to this process is development of modular systems that can operate economically at stranded sites. Conventional gas-to-liquids (GTL) technologies face significant challenges such as high capital cost and limited efficiency.
Chemical Commodity Processes
North Carolina State University
EcoCatalytic Technologies
4

Advanced Nanocomposite Membrane for Natural Gas Purification

Processing natural gas is the largest industrial application of gas separation membranes. Membranes occupy 10% of the ~$5 billion worldwide annual market for new natural gas separation equipment, with amine absorption accounting for most of the rest. While widely used, amine systems suffer from corrosion, complex process design, and equipment often unsuitable for offshore gas processing platforms. Amine systems are also less efficient than membranes at high CO2 concentrations.
Natural Gas Upgrading
University of Texas at Austin
4

Efficient Chemicals Production via Chemical Looping

This project will develop chemical looping technology (CLT) into a general process intensification (PI) strategy for modular upgrading of natural gas to commodity chemicals. Nonoxidative upgrading of methane, ethane and propane to alkenes and aromatics is often limited by equilbrium. CLT is an effective PI strategy to circumvent such limitations by either reactive separation or selective oxidation of a subset of products from the reaction mixture to restore the thermodynamic driving force.
Natural Gas Upgrading
University of Delaware
Dow
3

Intensified Commercial Scale Production of Dispersants

This project will demonstrate conversion of a large-volume chemical commodities process from batch to continuous processing. It is focused to create an order of magnitude reduction in equipment size (and associated capital cost) by transitioning the traditionally batch production of dispersants, specifically succinimide dispersants, into a continuous process. Succinimide dispersants are a relatively large volume family of products that vary by molecular weight, and structure.
Chemical Commodity Processes
University of Pittsburgh
4

Modular Conversion of Stranded Ethane to Liquid Fuels

Ethane can represent up to 20 vol.% of shale-gas, exceeding the 10 vol. % allowed in “pipeline-quality” natural gas. Each year, over 210 million barrels (liquid equivalent) of ethane are rejected in the lower 48 states. Upgrading low- to negative-value ethane to easily transportable liquid fuels is a promising solution to this supply glut. The key to this process is development of modular systems that can operate economically at stranded sites. Conventional gas-to-liquids (GTL) technologies face significant challenges such as high capital cost and limited efficiency.
Chemical Commodity Processes
North Carolina State University
3

Para-xylene Selective Membrane Reactor

The current approach to p-xylene production includes an isomerization step that gives a nearly equilibrium distribution of mixed xylenes, followed by a separate step to recover p-xylene, then recycling of p-xylene depleted product for further isomerization. This project aims to develop and validate para-xylene ultra-selective zeolite membranes and integrate them with an appropriately designed isomerization catalyst in a membrane reactor to accomplish selective para-xylene production.
Chemical Commodity Processes
University of Minnesota
ExxonMobil Research & Engineering Company
3

Pages

Subscribe to AIChE RSS