Development and Comparison of Approximate Maximum Likelihood Methods for Parameter Estimation in Continuous Dynamic Models With Stochastic Disturbances

Pharmaceutical Discovery, Development and Manufacturing Forum
AIChE Annual Meeting
November 3, 2013 - 3:00pm-3:15pm

The aim of this work is estimating model parameters in simplified fundamental models intended for on-line process monitoring and state estimation.  Stochastic error terms are often included in these differential equation models to account for process disturbances , time-varying parameters and model mismatch.  Three maximum-likelihood-based parameter estimation techniques have been developed to estimate the model parameters and the intensity of the stochastic disturbances.  These methods , which are designed to be less computationally intensive than Monte Carlo methods , rely on B-spline approximations for the state trajectories.  Three different objective functions for parameter estimation have been developed using different approximations for likelihood functions.  The first objective function is developed by approximating the expected value of the likelihood for the states and measurements , given the model parameters and disturbance intensities , using the mode of the corresponding probability distribution , assuming that measurement noise variances are known.  The second method uses a Laplace approximation for the likelihood function of the measurements given the model parameters , disturbance intensity and noise variances. The third uses a more accurate fully Laplace approximation.  These latter methods are more powerful than the first because they can be used when measurement noise variances are unknown.  The three techniques , which result in relatively simple objective functions for parameter estimation , are compared with existing approximate maximum likelihood methods using a simple stochastic CSTR example.

Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.


Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members Free Free access