A Simple, Powerful, Binning Approach to MPC Model Gain Conditioning | AIChE

A Simple, Powerful, Binning Approach to MPC Model Gain Conditioning

Type

Conference Presentation

Conference Type

AIChE Spring Meeting and Global Congress on Process Safety

Presentation Date

April 11, 2022

Duration

30 minutes

Skill Level

Intermediate

PDHs

0.50

There is power in the plant testing/statistical regression approach to building dynamic models used in model-based controllers. Using regression to derive a raw APC model will maximize its degrees of freedom, and the result is a model that contains small or non-existent degrees of freedom. Control issues can arise when optimization techniques use these small degrees of freedom to calculate targets for plant operation. Techniques like RGA, SVD, and pivoting are helpful for analyzing control interactions, and conditioning issues can be fixed relatively easily in small models. However, these techniques become difficult and tedious for larger, more complex models. This paper describes a novel, non-iterative binning technique for quickly solving 2x2 conditioning issues for any size model, while guaranteeing gain percentage changes below a certain threshold. Higher order interactions are also discussed.

Presenter(s) 

Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.

Language 

Checkout

Checkout

Do you already own this?

Pricing

Individuals

AIChE Member Credits 0.5
AIChE Pro Members $19.00
Fuels and Petrochemicals Division Members Free
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
AIChE Explorer Members $29.00
Non-Members $29.00