Solar Hydrogen Production Using Ferrite-Based Water Splitting Cycles On Al2O3 Substrates

Nanomaterials for Energy Applications
2009 AIChE Annual Meeting
AIChE Annual Meeting
November 8, 2009 - 7:00pm
We are reporting the results of an alternative ferrite cycle in which the ferrite (CoFe2O4) is deposited on a porous Al2O3 support via atomic layer deposition (ALD). Rather than a traditional cycle, in which the ferrite is deposited on an inert support or is unsupported, the ferrite reacts with Al2O3 during thermal reduction to form hercynite (FeAl2O4). This is advantages because the reaction between the ferrite and Al2O3 is favored at lower temperatures than the reduction of Fe3+ to Fe2+ on an inert support. Subsequent water oxidation is then achievable at 1000 oC, similar to other ferrite cycles. This redox cycle is shown in the two step reaction below: CoFe2O4 + Al2O3 + solar thermal energy =>CoO + 2FeAl2O4 + 0.5 O2 (1) CoO + 2FeAl2O4 + H2O => CoFe2O4 + Al2O3 + 2H2 (2) In the first step, solar thermal energy is used to reduce the ferrite, and oxygen is evolved. In the second step, the reduced material is reacted with water to generate hydrogen and is reoxidized. Therefore, the only inputs are solar energy and water, and the only outputs are H2 and O2. Thermal reduction was attempted at temperatures ranging from 1200 oC to 1500 oC, and results indicate that reduction occurs at lower temperatures than traditional ferrite cycles. It was observed that hercynite (FeAl2O4) was formed after reduction, due to a reaction between FeO and the Al2O3 substrate. Subsequent water oxidation was achievable at 1000 oC and the reaction was shown to be repeatable over 8 cycles. Experimental results are compared to thermodynamic modeling performed using FactSage and results agree well with thermodynamic predictions, as seen in figure 1. Thermodynamic modeling results predict more H2 generation for CoFe2O4 on Al2O3 over reduction temperatures from 1200 to 1500 oC. Right) Experimental results predict more H2 generation for CoFe2O4 on Al2O3 over reduction temperatures from 1200 to 1400 oC H2 conversions varied between 18% and 25 % when cycling was performed at 1200 oC reduction and 1000 oC water oxidation. Crystallinity changes were measured before and after reduction using powder x-ray diffractometry, and conversions were calculated via in situ mass spectrometry. Film morphology and composition were measured via high resolution transmission electron microscopy and induced coupled plasma-atomic emission spectroscopy, respectively.&'
Professional Development Hours
0.4 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.
Presenter(s): 

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.

Pricing

Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members Free Free access
Related Topics: