Pyrolysis Vapors Upgrading Using Metal Oxides

Fuels and Petrochemicals Division
2011 AIChE Annual Meeting
AIChE Annual Meeting
October 17, 2011 - 8:00pm

Pyrolysis Vapors Upgrading using Metal Oxides

Ayman M. Karim1, Donghai Mei1, Vanessa Lebarbier1, Changjun Liu1,2 and Yong Wang1,2

1Pacific Northwest National Laboratory

2Washington State University

The vapors generated during fast pyrolysis of biomass contain a significant fraction of light oxygenates (acetic acid, hydroxyacetaldehyde, hydroxyacetone,..) which are produced through undesired fragmentation reactions during pyrolysis. Hydrodeoxygenation of the light oxygenates would result in light alkanes which are not useful for transportation fuels. Therefore. the light compounds need to be converted to larger molecules before the   hydrodeoxygenation/hydrotreating of the pyrolysis vapors (or bio-oil).

In this contribution, deoxygenation strategies for the upgrading of light oxygenates using metal oxides will be presented. The work combines experimental and density functional theory (DFT) calculations to identify metal oxide(s) for the

1- Upgrading of light oxygenates (building up) to fuel range compounds (C5+)

2- Deoxygenation of biomass depolymerization products (C5+ molecules)

We will show that ketonization and condensation on CeO2 based mixed oxides is an effective way of re-building the light oxygenates into fuel range molecules. CeO2 based mixed oxides show a 90+% selectivity to acetone during the ketonization of acetic acid. The ketonization reaction pathway on CeO2 was investigated using density functional theory calculations and the role of the second metal on selectivity and tolerance to H2O and CO2 will be presented.

The deoxygenation of the pyrolysis vapors using partially reduced metal oxides will also be presented. We show that oxygen vacancies on MoO3 (010) can selectively cleave the C-O bond over C-C bonds. Finally we will discuss the strategies and challenges to combine both approaches in a single upgrading step.

Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.


Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Fuels and Petrochemicals Division Members Free Free access
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members $15.00 Buy now
Related Topics: