Investigating Fundamental Electrochemical Processes In a Li-O2 Battery

Fuels and Petrochemicals Division
2011 AIChE Annual Meeting
AIChE Annual Meeting
October 16, 2011 - 8:00pm

Li-air batteries have received significant attention as a potential high specific energy alternative to current state-of-the-art rechargeable Li-ion batteries. Nevertheless, published Li-air embodiments have only achieved a small fraction of their enormous theoretical specific energy (11,700 Wh/kg of Li) with limited rechargeability, and many operational aspects, including lithium-oxygen electrochemistry, appear to be poorly understood. This presentation will outline our initial efforts to understand some fundamental properties of non-aqueous Li-O2 electrochemistry.

Among the many important challenges facing the development of Li-air batteries, our research has focused on processes occurring at the porous carbon cathode. To better understand the electrolyte solvent’s role in producing the desired rechargeable cathode reaction (i.e., Li+ + O2 + 2e- → Li2O2), quantitative Differential Electrochemical Mass Spectrometry (DEMS), coupled with ex-situ chemical analysis of cell cathodes, was used to study the applicability of carbonates and dimethoxyethane in Li-O2 cells.

Our studies have revealed that carbonate-based electrolyte solvents, similar to those used in Li-ion batteries, irreversibly decompose upon Li-O2 cell discharge to form undesired electrodeposits composed mainly of lithium carbonate and lithium alkyl carbonates. Employing dimethoxyethane (DME) as a solvent, however, mainly produces lithium peroxide on discharge, but both Li2O2 decomposition (the desired electrochemistry) and DME oxidation (a parasitic side reaction) occur during cell charging. These results clearly indicate that oxidative and reductive electrolyte stability in the presence of Li2O2 is critically important to produce a truly rechargeable Li-air battery.

Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.
Presenter(s): 

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.

Pricing

Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members Free Free access
Related Topics: 
Skill Level: