Hydrogen Production Through a Modified Sulfur-Iodine Thermochemical Water Splitting Cycle in Hydrophobic Ionic Liquid

International Congress on Energy (ICE)
AIChE Annual Meeting
October 31, 2012 - 8:55am-9:20am

Hydrogen Production through a Modified Sulfur-Iodine Thermochemical Water Splitting Cycle in Hydrophobic Ionic Liquid

Kevin Caple and Alexandre Yokochi

One of the most pressing issues of the new millennium is the development of clean, simple, and renewable energy sources.  Of the various process that have been studied, thermochemical water splitting is one that has been conceptualized and researched for over half a century, yet, at this point, none are commercially viable.  These thermochemical water splitting cycles include the family of Sulfur cycles and metal/metal oxide couples.

Of the Sulfur based cycles, one of the simplest is the Sulfur-Iodine cycle, which uses sulfur dioxide, iodine, and a large excess of water to produce iodic acid and sulfuric acid, both of which can be further processed into hydrogen and oxygen gases, and regenerate the initial sulfur dioxide and iodine for reuse.  Unfortunately, this process has been stalled due to difficulties separating the azeotropic iodic acid/water mixture. 

We have developed an approach to avoid this issue in utilizing what was previously considered an undesired side reaction that produces hydrogen sulfide.  It has been shown that hydrogen sulfide can be successfully steam reformed into hydrogen, as well as regenerate sulfur dioxide to complete this modified Sulfur-Iodine cycle.  The series of reactions is as follows:

I2 + SO2 + 2H2O -> 2HI + H2SO4 (Bunsen Reaction, Low Temp)

8HI + H2SO4 -> H2S + 4I2 + 4H2O (Side Reaction Producing H2S, Low Temp)

H2S + 2H2O -> 3H2 + SO2 (Steam Reformation, High Temp)

In our work we carry out the two low temperature reactions in an imidazolium based hydrophobic ionic liquid since both iodine and sulfur dioxide have solubilities in these.  In our presentation, we will discuss recent experimental results of this reaction in ionic liquid, including kinetic parameters, the results of  regenerating of the ionic liquid, and the extent of the cyclic reaction.

Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.


Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members $15.00 Buy now
Related Topics: