Effect of Anti-Apoptosis Genes On Clarification Performance

Pharmaceutical Discovery, Development and Manufacturing Forum
AIChE Annual Meeting
November 6, 2013 - 3:40pm-4:05pm
Optimal bioreactor harvest time is typically determined based on maximizing product titer without compromising product quality. We suggest that ease of downstream purification (DSP) should also be considered during harvest. In this view , we studied the effect of anti-apoptosis genes on downstream performance. Our hypothesis was that more robust cells would exhibit less cell lysis and thus generate lower levels of cell debris and host-cell contaminants. We focused on the clarification unit operation , measuring post-clarification turbidity and host-cell protein (HCP) concentration as a function of bioreactor harvest time/cell viability. In order to mimic primary clarification using disk-stack centrifugation , a scale-down model consisting of a rotating disk (to simulate shear in the inlet feed zone of the centrifuge) and a swinging-bucket lab centrifuge was used. Our data suggest that in the absence of shear during primary clarification (typical of depth filters) , a 20-50% reduction in HCP levels and 50-65% lower post-centrifugation turbidity was observed for cells with anti-apoptosis genes compared to control cells. However , on  exposing the cells to shear levels typical in a disk-stack centrifuge , the reduction in HCP was 10-15% while no difference in post-centrifugation turbidity was observed. The maximum benefit of antiapoptosis genes is therefore realized using clarification options that involve low shear , < 1x10^6 W/m3 and minimal damage to the cells.
Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.


Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members Free Free access
Related Topics: