Fischer-Tropsch synthesis has long been known as an alternative process to produce long-chain hydrocarbons for their use in transportation fuels. In the Fischer−Tropsch reaction, synthesis gas produced from natural gas reforming or gasification of coal or biomass is transformed in the presence of cobalt, ruthenium, and iron catalysts. The product distribution is highly dependent on the process conditions and the type of catalyst used. Commercially FTS is performed in the gas or slurry phase. Recent studies demonstrated that FTS can be performed in aqueous phase too [1, 2]. The present work aims to investigate the effect of reaction temperature and reaction time on the performance of ruthenium nanoparticle catalyst during aqueous-phase Fischer-Tropsch synthesis by using a stirred tank batch reactor.
To receive your PDH certificate contact certificates@aiche.org or 1-800-242-4363.
Watch the following preview of this presentation.
Would you like to access this content?
No problem. You just have to complete the following steps.
You have completed 0 of 2 steps.
-
Log in
You must be logged in to view this content. Log in now.
-
Purchase Technical Presentation
You must purchase this technical presentation using one of the options below.
If you already purchased this content recently, please click here to refresh the system's record of ownerships.
Pricing
| Credits | 0.5 Use credits |
| List Price | $25.00 Buy now |
| AIChE Members | $15.00 Buy now |
| AIChE Fuels and Petrochemicals Division Members | Free Free access |
| AIChE Undergraduate Student Members | Free Free access |
| AIChE Graduate Student Members | Free Free access |
