Colloidal Crystals and Entropic Bonding | AIChE

Colloidal Crystals and Entropic Bonding

Entropy is typically associated with disorder; yet, the counterintuitive notion that particles with no interactions other than excluded volume might self-assemble from a fluid phase into an ordered crystal has been known since the mid-20th century. First predicted for rods, and then spheres, the thermodynamic ordering of hard shapes by nothing more than crowding is now well established. In recent years, surprising discoveries of entropically ordered colloidal crystals of extraordinary structural complexity have been predicted by computer simulation and observed in the laboratory.

Colloidal quasicrystals, clathrate structures, and structures with large and complex unit cells typically associated with metal alloys, can all self-assemble from disordered phases of identical particles due solely to entropy maximization. In this talk, we show how entropy alone can produce order and complexity beyond that previously imagined, both in colloidal crystal structure as well as in the kinetic pathways connecting fluid and crystal phases, and we show how methods used by the quantum community to predict atomic crystal structures can be used to predict entropic colloidal crystals.


Webinar content is available with the kind permission of the author(s) solely for the purpose of furthering AIChE’s & IChemE’s mission to educate, inform and improve the practice of professional chemical engineering. The content reflects the views, opinions, and recommendations of the presenters. AIChE does not warrant or represent, expressly or by implication, the correctness or accuracy of the content of the information presented. All other uses are forbidden without the express consent of the author(s). For permission to re-use, please contact chemepermissions@aiche.org. Attendee contact information, including email addresses, will be shared with AIChE and IChemE, with the option to unsubscribe from future communications.

Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.
  • AIChE Pro Members - Free
  • AIChE Graduate Student Members - Free
  • AIChE Undergraduate Student Members - Free
  • AIChE Explorer Members - $109.00
  • Non-Members - $109.00
Do you already own this? Log In for instructions on accessing this content.
  • Source:
    Northeastern University Graduate Student Series
  • Language:
    English
  • Skill Level:
    Intermediate
  • Duration:
    1 hour
  • PDHs:
    1.00