Microchannel Rapid Temperature Swing Adsorption of CO2 for Methane Production

Developed by: AIChE
  • Type:
    Conference Presentation
  • Duration:
    30 minutes
  • Skill Level:
    Intermediate
  • PDHs:
    0.50

Share This Post:

You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.
A rapid thermal swing adsorption system combined with Sabatier reactor was developed to demonstrate the applicability of a NASA microchannel Mars In Situ Propellant Production (ISPP) system.  A thermal swing adsorption pump was designed to collect and compress CO2 by rapidly temperature cycling eight cells filled with Molesieve 13X.  Recuperation of energy between cells was used to minimize heat and cooling requirements.  The collected CO2 can be combined hydrogen from electrolyzed water to produce methane fuel using a microchannel Sabatier reactor. 

Tests were performed to compress CO2 by 10 fold using a feed stream of 10% CO2 and 90% N2 at 1, 2, and 4 minute cycle times.  With the initial testing, a compression ratio of 5.3 was achieved with 71 to 79% thermal recuperation efficiency.  Subsequent modeling work has refined the design and the number of cells required to improve the overall system efficiency and simplify the process.  These results indicate similar thermal efficiencies can be achieved using a system with only four cells rather than eight.  Modeling results further demonstrate design changes required to obtain improved efficiencies and compression ratios.  Results of both the original experimental work and the more recent modeling efforts will be presented.

Presenter(s): 

Checkout

Checkout

Do you already own this?

Log In for instructions on accessing this content.

Pricing

AIChE Member Credits 0.5
AIChE Members $15.00
AIChE Undergraduate Student Members Free
AIChE Graduate Student Members Free
Non-Members $25.00