Using Machine Learning Methods to Understand and Predict Riser Flow Characteristics | AIChE

Using Machine Learning Methods to Understand and Predict Riser Flow Characteristics

Type

Conference Presentation

Conference Type

AIChE Annual Meeting

Presentation Date

November 20, 2020

Duration

15 minutes

Skill Level

Intermediate

PDHs

0.30

Machine learning methods were applied to circulating fluidized bed (CFB) riser data. The goals were to (i) provide insights on various fluidization phenomena through determining the relative dominance of the process variables, and (ii) develop a model to provide predictive capability in the absence of first-principles understanding that remains elusive. The Random Forest results indicate radial position had the most dominant influence on local mass flux and species segregation, overall mass flux was the most dominant for local particle concentration, while no variable was particularly dominant or negligible for the local clustering characteristics. Furthermore, the Neural Network can be trained to provide good predictive capability, without any mechanistic understanding needed, if a sufficiently large dataset is used for training and if the input variables fully account for all the effects at play. This study underscores the value of machine learning methods in fluidization to advance understanding and provide adequate predictions.

Presenter(s) 

Once the content has been viewed and you have attested to it, you will be able to download and print a certificate for PDH credits. If you have already viewed this content, please click here to login.

Language 

Checkout

Checkout

Do you already own this?

Pricing

Individuals

AIChE Member Credits 0.5
AIChE Pro Members $19.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
AIChE Explorer Members $29.00
Non-Members $29.00