Industrial Systems Biology

Originally delivered Aug 25, 2009
  • Type:
    Archived Webinar
  • Level:
  • PDHs:

Share This Post:

Cell factories are used extensively to produce many specific molecules used as pharmaceuticals, fine chemicals, fuels, materials and food ingredients. Through the use of directed genetic modifications of cell factories – an approach referred to as metabolic engineering – it is possible to develop novel bioprocesses that are more efficient, that are more environmentally friendly and that may produce novel compounds. Biotech processes are therefore increasingly replacing classical chemical synthesis.

In this development it is particularly interesting to develop platform cell factories that can be used for production of many different compounds. This approach has been used with great success in the field of industrial enzyme production, where e.g. Aspergillus oryzae is used for the production of a large number of enzymes. Yeast and filamentous fungi represents very attractive cell factories for production of chemicals, as these organisms have extensive metabolic capabilities and are already implemented for industrial production of many different compounds.

Besides being and industrial workhorse for the production of beer, wine, bread, chemicals and pharmaceuticals, the yeast Saccharomyces cerevisiae serves as an important eukaryotic model organism. There have therefore been many detailed studies in this organism and the molecular mechanisms underlying many different diseases have been revealed through studies using this yeast. We have used S. cerevisiae as a platform organism for the production of a wide range of chemicals, e.g. antibiotics, organic acids, isoprenoids and lipids. In this lecture the development and use of different systems biology technologies for identification of metabolic engineering targets will be presented.

Aspergillus niger and Aspergillus oryzae are two other important cell factories, that are used for the production of enzymes and organic acids. We have recently developed an extensive systems biology toolbox for these two fungi, and in the lecture some results from this will also be presented.

You will be able to download and print a certificate for PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.

Jens Nielsen

Professor Nielsen has a MSc in Chemical Engineering from the Technical University of Denmark and a PhD in Biotechnology from the same institution. He did a post doc at the University of Hannover, and thereafter continued his research career as group leader at Center for Process Biotechnology, Technical University of Denmark. In 1996 he was appointed as associated director at Department of Biotechnology, Technical University of Denmark, and in 1998 he was promoted to full professor at the same place. He served as deputy director of Center for Process Biotechnology for several years, and...Read more



Do you already own this?

Log In for instructions on accessing this content.


AIChE Member Credits 1
AIChE Members $69.00
AIChE Undergraduate Student Members Free
AIChE Graduate Student Members Free
SBE Members Free
Non-Members $99.00
Webinar content is available with the kind permission of the author(s) solely for the purpose of furthering AIChE’s mission to educate, inform and improve the practice of professional chemical engineering. All other uses are forbidden without the express consent of the author(s). For permission to re-use, please contact