(326d) Electrochemical Bicarbonate Conversion into Chemicals and Fuels | AIChE

(326d) Electrochemical Bicarbonate Conversion into Chemicals and Fuels

Authors 

Berlinguette, C., University of British Columbia
Weber, A., Lawrence Berkeley National Laboratory
Electrochemical CO2 reduction converts CO2 and water into chemicals and fuels such as carbon monoxide, methane, and ethylene. Pure CO2 gas (>99% v/v) is often used as the feedstock for low-temperature electrochemical reactors (electrolyzers); however, pure CO2 gas must be captured from the atmosphere or an industrial source via a series of energy-intensive thermal desorption steps before it is converted.1 The direct electrochemical conversion of carbon capture sorbents, as opposed to CO2 gas, presents an opportunity to electrochemically synthesize carbon chemicals and fuels without the need for CO2 thermal desorption.

This presentation will discuss the science and engineering behind “bicarbonate electrolyzers”—devices that convert bicarbonate-based carbon capture solutions into reduced carbon products in a single-step. Bicarbonate electrolyzers use H+ generated electrochemically to trigger the in situ release of CO2 gas from bicarbonate near a CO2 reduction catalyst. This acid-base mechanism enables high product formation rates without the need to isolate pure CO2 gas upstream. Since the first report of bicarbonate electrolysis,2 we systematically investigated the effect of electrode properties (e.g., hydrophobicity and surface area),3 operating conditions (e.g., pressure and temperature),4 CO2 capture promoters,5 and ionic surfactants6 on product formation rates. The use of hydrophilic silver electrodes and elevated pressures enabled CO formation rates >200 mA cm-2, and the addition of cetrimonium bromide to the bicarbonate feedstock enabled >100 mA cm-2 of methane formation when using a porous copper electrode. 1D multi-physics models were used to quantify the rate-limiting in situ CO2 formation step and show how a high H+ flux from the membrane increases methane selectivity with copper catalysts. Finally, the electrolyzer was integrated with a CO2 absorption column and tested with different CO2 capture promoters. This talk will overview these studies and establish guidelines for converting reactive carbon capture solutions into valuable products.

References

  1. Keith, D. W.; Holmes, G.; Angelo, D. S.; Heidel, K., A Process for Capturing CO2 from the Atmosphere. Joule 2018, 2 (8), 1573-1594.
  2. Li, T. F.; Lees, E. W.; Goldman, M.; Salvatore, D. A.; Weekes, D. M.; Berlinguette, C. P., Electrolytic Conversion of Bicarbonate into CO in a Flow Cell. Joule 2019, 3 (6), 1487-1497.
  3. Lees, E. W.; Goldman, M.; Fink, A. G.; Dvorak, D. J.; Salvatore, D. A.; Zhang, Z. S.; Loo, N. W. X.; Berlinguette, C. P., Electrodes Designed for Converting Bicarbonate into CO. Acs Energy Lett 2020, 5 (7), 2165-2173.
  4. Zhang, Z. S.; Lees, E. W.; Habibzadeh, F.; Salvatore, D. A.; Ren, S. X.; Simpson, G. L.; Wheeler, D. G.; Liu, A.; Berlinguette, C. P., Porous metal electrodes enable efficient electrolysis of carbon capture solutions. Energ Environ Sci 2022, 15 (2), 705-713.
  5. Fink, A. G. G.; Lees, E. W. W.; Gingras, J.; Madore, E.; Fradette, S.; Jaffer, S. A. A.; Goldman, M.; Dvorak, D. J. J.; Berlinguette, C. P. P., Electrolytic conversion of carbon capture solutions containing carbonic anhydrase. J Inorg Biochem 2022, 231.
  6. Lees, E. W.; Liu, A.; Bui, J. C.; Ren, S. X.; Weber, A. Z.; Berlinguette, C. P., Electrolytic Methane Production from Reactive Carbon Solutions. Acs Energy Lett 2022, 7 (5), 1712-1718.