(585q) Government of Canada Clean Fuel Standard Discussion Paper - Ammonia (NH3) As a Carbon-Free Fuel

Authors: 
Vezina, G., Hydrofuel Inc.
Vezina, G., Hydrofuel Inc.
Clean Fuel Standard Discussion Paper - Ammonia (NH3) as a Carbon-Free Fuel

 

Ammonia is a carbon-free fuel suitable for use in transportation sector. It has a well-established production and distribution infrastructure, and has zero global warming potential during operation. In addition to its attractive qualities as a fuel, ammonia is widely used as a NOx reducing agent for combustion exhaust gases using selective catalytic reduction (SCR), and its capacity as a refrigerant can be applied to recover and further utilize engine heat that would otherwise be lost. In terms of environmental sustainability, ammonia can be produced using either fossil fuels, or any renewable energy source, using heat and/or electricity, which allows for evolution of ammonia production methods and technologies in parallel with sustainable development. Ammonia as a sustainable fuel can be used in all types of combustion engines, gas turbines, burners with only small modifications and directly in fuel cells which is a very significant advantage compared to another type of fuels. Reducing the total greenhouse gas emissions from marine transportation is possible by using ammonia which is carbon-free fuel. They can be utilized for maritime ship engines directly as supplementary fuels or individual fuels. Ammonia fueled ships yield considerably lower global warming impact during operation. Ammonia as a sustainable and clean fuel in road vehicles yield also the lowest global warming potential after electric and hydrogen vehicles. As a result, ammonia usage in the communities for transportation sector will bring significant cost and environmental benefits together with public satisfaction.

 

This brief report tries to address the following points:

  1. Targets and blending requirements:
    1. Ontario has existing content requirements for ethanol in gasoline. What minimum level of ethanol blending and GHG performance would help support the objectives of the RFS?
    2. Given Ontario’s GHG reduction targets for 2030 and 2050, what factors should be considered in setting RFS targets post-2020?
  2. Flexibility mechanisms:
    1. Should activities to lower the carbon intensity of other conventional transportation fuels be eligible for compliance purposes?
    2. Should investments in low-carbon transportation projects also be eligible for compliance purposes? If yes, what types of projects?
  3. Assessing lifecycle emissions
    1. Should an RFS consider impacts from indirect land-use changes (ILUC),7 even though science in this area continues to evolve? If so, how?
  4. Transparency:
    1. What measures can be taken to increase transparency and support business decision making under an RFS (e.g. an information registry, bulletins, guidance material)?
  5. Others:
    1. What other considerations should be included in the discussion?

This report is primarily based upon three MITACS projects and several other location, feedstock or jurisdictionally based reports Hydrofuel Inc. has completed with the University of Ontario Institute of Technology (UOIT) PHASE 1 - Comparative assessment of NH3 production and utilization in transportation systems for Ontario http://www.nh3fuel.com/images/documents/2015-11-23%20-%20MITACS-Final-Re...

  • Extensive study on the ammonia production from various types of resources such as renewable energies (wind, solar), methane steam reforming and excess power in nuclear and/or hydro power plants. Assess the emissions and pollutants discarded by each method during processes.
  • Detailed study on ammonia based transportation systems and ammonia based commercial products ideas.
  • Identifying opportunities for green NH3 production and efficient utilization of ammonia in various sectors and especially in transportation sector.
  • Implementing life cycle analysis of ammonia production methods and impact of ammonia production on environment.
  • Ammonia fuel cycle comparison with conventional transportation systems in terms of sustainability and economics.
  • Assess the environmental, economic, sustainability and feasibility of the conceptual systems using life cycle considerations.

PHASE 2 - Comparative assessment of NH3 production and utilization in agriculture, energy and utilities, and transportation systems for Ontario http://www.nh3fuel.com/images/documents/2016-06-17%20-%20MITACS-Final%20...

  • Oil sand and underground coal gasification based ammonia production methods will be investigated and green ammonia production from oil sands and coal reserves will be analyzed comprehensively.
  • Microwave dissociation of oil sand will be investigated for ammonia production.
  • Specific applications of chosen ammonia production methods will be determined based on potential scenarios in Canada.
  • Case studies will be conducted for various locations, such as that low cost hydroelectric based ammonia production opportunities in Newfoundland and Labrador will be investigated, and an integrated system will be proposed to assess them thermoeconomically.
  • A detailed investigation of stranded natural gas microwave dissociation of high-pressure liquefied methane into hydrogen gas and elemental carbon will be investigated.
  • Direct ammonia usage opportunities in marine, mining, rail and transportation applications will be analyzed.
  • Comprehensive thermo-economic evaluations of chosen ammonia production methods will be conducted for various scenarios such as low cost hydropower and oil sands.
  • Experimental investigations of some novel ammonia production methods through some lab scale prototypes such as SSAS and molten salt based electrolytic ammonia synthesis will be investigated.
  • Lab scale molten salt based ammonia synthesis will be experimentally realized.

PHASE 3 - Thermo-economic assessment and experimental investigation of renewable energy based NH3 production options for clean energy communities

http://www.nh3fuel.com/images/documents/2017-03-25%20-%20MITACS-Final-Re...

  1. Energy and exergy analyses of
  • solar energy based electrochemical ammonia production
  • low-cost hydroelectric based ammonia production
  • wind energy based ammonia production
  • underground coal gasification based ammonia production
  • ammonia production via hydrocarbon decomposition such as dissociation of methane and oil sand bitumen
  1. Environmental impact assessments of
  • ammonia utilization in air transportation including freight transport
  • ammonia usage in sea transportation including ocean tankers and freight ships
  1. Thermo-economic analyses and evaluations of
  • hydropower, solar and wind energy based ammonia synthesis for Ontario.
  • on-site ammonia production and utilization for remote communities in Northwestern Ontario.
  • transport of ammonia vs. LNG via pipelines.
  • hydrocarbons based ammonia production for Alberta and Newfoundland.
  • ammonia utilization as a fuel for power, heating and cooling generation
  1. Optimization study of:
  • various resources based Haber-Bosch ammonia synthesis for lower energy requirement including wind and hydroelectric options
  1. Experimental investigation of:
  • molten salt based electrochemical ammonia synthesis at ambient pressure
  • concentrated solar energy based electrochemical ammonia synthesis
  1. Scalability and feasibility analyses of:
  • solar energy based electrochemical ammonia synthesis experimental setup
  • low-cost hydroelectric, wind, geothermal, ocean and biomass energy based ammonia synthesis methods
  • hydrocarbon decomposition based ammonia production methods

    OTHER REPORTS REFERENCED:

    Includes data from other reports at the HYDROFUEL® INC. website at http://www.NH3fuel.com

Checkout

This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.

Checkout

Do you already own this?

Pricing


Individuals

AIChE Members $150.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
Non-Members $225.00