(305f) Computational Study of the Adsorption Properties of M(bdc)(ted)0.5 (M = Ni, Zn) | AIChE

(305f) Computational Study of the Adsorption Properties of M(bdc)(ted)0.5 (M = Ni, Zn)

Authors 

Meza-Morales, P. - Presenter, University of Puerto Rico
Curet-Arana, M. - Presenter, University of Puerto Rico
Rosa-Raíces, J. L. - Presenter, University of Puerto Rico

Metal-organic frameworks (MOFs) have emerged as potential alternatives for the capture and storage of CO2 from flue gas emissions.1,2  Of particular interest is M(bdc)(ted)0.5 (M = Ni or Zn; bdc = 1,4-benzenedicarboxylate; ted = triethylenediamine), as experimental and theoretical studies have shown that the Zn variant exhibits higher affinity towards CO2 than other small molecules, such as CH4, O2 and N2 when the bdc linkers are functionalized.3  While Zn(bdc)(ted)0.5 has been extensively studied4–8, neither experimental nor theoretical studies of the adsorption capacities of the Ni variant of this MOF have been reported in the literature.  In this work, a computational approach was used to shed light on the adsorption dynamics of CO2 on the M(bdc)(ted)0.5 (M = Ni, Zn) isostructures.  Adsorption isotherms were simulated with the grand canonical Monte Carlo technique.  The partial charges of the framework atoms were obtained from charge-assignment schemes based on DFT calculations9,10and the computationally-inexpensive charge equilibration method.11,12  The simulated isotherms of Zn(bdc)(ted)0.5 were compared with experimental data available in the literature.  On the basis of agreement with the experimental isotherms, it was possible to examine the suitability of the different theoretical methods for rendering the charge distribution on the M(bdc)(ted)0.5 frameworks.

References:

(1)      Sayari, A.; Belmabkhout, Y.; Serna-Guerrero, R. Chem. Eng. J. 2011, 171(3), 760–774.

(2)      Li, J. R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H. K.; Balbuena, P. B.; Zhou, H. C. Coord. Chem. Rev. 2011, 255(15-16), 1791–1823.

(3)      Zhao, Y.; Wu, H.; Emge, T. J.; Gong, Q.; Nijem, N.; Chabal, Y. J.; Kong, L.; Langreth, D. C.; Liu, H.; Zeng, H.; Li, J. Chem. - A Eur. J. 2011, 17, 5101–5109.

(4)      Lee, J. Y.; Olson, D. H.; Pan, L.; Emge, T. J.; Li, J. Adv. Funct. Mater. 2007, 17, 1255–1262.

(5)      Liu, J. C.; Lee, J. Y.; Pan, L.; Obermyer, R. T.; Simizu, S.; Zande, B.; Li, J.; Sankar, S. G.; Johnson, J. K. J. Phys. Chem. C 2008, 2911–2917.

(6)      Hernandez-Maldonado, a J.; Guerrero-Medina, J.; Arce-Gonzalez, V. C. J. Mater. Chem. A 2013, 1, 2343–2350.

(7)      Dybtsev, D. N.; Chun, H.; Kim, K. Angew. Chemie - Int. Ed. 2004, 43(38), 5033–5036.

(8)      Chen, Y. F.; Lee, J. Y.; Babarao, R.; Li, J.; Jiang, J. W. J. Phys. Chem. C 2010, 114(14), 6602–6609.

(9)      Hamad, S.; Balestra, S. R. G.; Bueno-Perez, R.; Calero, S.; Ruiz-Salvador, a. R. J. Solid State Chem. 2015, 223, 144–151.

(10)    Yazaydin, a O.; Snurr, R. Q.; Park, T.-H.; Koh, K.; Liu, J.; Levan, M. D.; Benin, A. I.; Jakubczak, P.; Lanuza, M.; Galloway, D. B.; Low, J. J.; Willis, R. R. J. Am. Chem. Soc. 2009, 131(51), 18198–18199.

(11)    Wilmer, C. E.; Kim, K. C.; Snurr, R. Q. J. Phys. Chem. Lett. 2012, 3(17), 2506–2511.

(12)    Wilmer, C. E.; Snurr, R. Q. Chem. Eng. J. 2011, 171 (3), 775–781.

Checkout

This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.

Checkout

Do you already own this?

Pricing

Individuals

AIChE Pro Members $150.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
AIChE Explorer Members $225.00
Non-Members $225.00