Michelle O'Malley

Michelle O'Malley

Assistant Professor
University of California, Santa Barbara

Michelle A. O’Malley earned a B.S. in Chemical Engineering and Biomedical Engineering from Carnegie Mellon University in 2004. She holds a PhD in Chemical Engineering from the University of Delaware in 2009, where she worked with Prof. Anne Robinson to engineer overproduction of membrane proteins in yeast. O’Malley was a USDA-NIFA postdoctoral fellow in the Department of Biology at MIT, where she developed new strategies for cellulosic biofuel production. She joined the Chemical Engineering faculty at UC-Santa Barbara in 2012, and her research group engineers protein synthesis within anaerobes and consortia for sustainable chemical production, bioremediation, and natural product discovery. O’Malley was named one of the 35 Top Innovators Under 35 by MIT Technology Review in 2015, and is the recipient of the Presidential Early Career Award for Scientists and Engineers (PECASE), a DOE Early Career Award, an NSF CAREER award, the Camille Dreyfus Teacher-Scholar Award, an ACS PMSE Young Investigator Award, an ACS WCC “Rising Star” Award, and a Hellman Faculty Fellowship.

 
Research

The O'Malley Lab works at the interface of engineering and biology to engineer microbes and consortia with novel functions. We are especially interested in deciphering how “unwieldy” microbes in the environment perform extraordinary tasks - many of these microbes have no available genomic sequence and are exceptionally difficult to manipulate. We seek a better understanding of how proteins are synthesized by cells, and how their three-dimensional structure informs their function would enhance our ability to engineer proteins (and cellular expression platforms) for diverse biomedical and biotechnology applications. To address these issues, our approach combines classical cell biology tools with cutting-edge technologies (genome sequencing, RNAseq, cellular reprogramming) that are rooted in the core biological sciences to interrogate and engineer molecular mechanisms that underlie protein production in eukaryotic cells. In addition, we rely on biophysical methods to elucidate protein-protein contacts, with the aim of controlling these interactions both in vivo and in vitro. Systems of interest to us have broad applicability to bioenergy and sustainability, as well as to drug development and detection.

For more information please visit http://www.omalleylab.com/