November 2018 | AIChE

You are here

November 2018

Formation of RAPID Center for Process Modeling

RAPID aims to improve energy efficiency, reduce feedstock waste, and improve productivity by promoting modular chemical process intensification (PI) for processing industries in the U.S. manufacturing sector. To facilitate consistent and objective evaluation of performance metrics of various PI projects, RAPID has established this program to support and/or perform first principles-based process modeling for both baseline and intensified processes.
Modeling and Simulation
Texas Tech University
Savannah River National Laboratory
Georgia Institute of Technology
Dow
AspenTech
Chemstations, Inc.

Modular Catalytic Desulfurization Units for Sour Gas Sweetening

This project focuses on overcoming manufacturing and supply chain issues associated with a much needed modular technology solution in the gas processing sector. The team will look to take an existing technology for sour gas cleanup (processing scale on order of 1 T/day sulfur or 1 MMSCFD gas processed) and look to improve benefit vs. cost through pilot testing to improve performance and manufacturing design/analysis to determine highest leverage cost reduction steps. The resulting technology will be piloted in a field test to confirm economic assessments.
Module Manufacturing
IntraMicron
Auburn University
Oregon State University
5

2019 Annual Meeting Exhibitors

Featured Exhibitors Exhibitor List Alliant Insurance Services, Inc. Anton Paar AspenTech AVEVA Brucker Scientific LLC CACHE Corporation Cambridge University Press Chemstations Inc Comsol De Gruyter DigiM Solution EDEM Elsevier Gamry Instruments Genentech GRANUTOOLS Heidolph North America HIDEN...

Development and Demonstration of Novel Thermal Technologies for Enhanced Air-Side and Two-Phase Performance of CPI-Relevant Heat Exchangers

Almost every process in the chemical and processing industries (CPI) involves heat transfer. Integrated functioning of a variety of heat exchangers with gas, liquid, and vapor/liquid flows of single- and multi-component working fluids, is critical in any processing plant. Improving air and/or process-side performance can significantly reduce energy consumption and capital costs. This project is looking at the novel geometries and mechanical actuation to enhance heat exchanger performance.
Module Manufacturing
Georgia Institute of Technology
University of Illinois Urbana-Champaign
HTRI (Heat Transfer Research, Inc.)
6

An Experimentally Verified Physical Properties Database for Sorbent Selection and Simulation

This project works to close the gap seen in the intensified process fundamentals area around how to enable modeling tools through the presentation of useful data for phenomena such as adsorption in complex systems. It looks to use meta-analysis of available databases to determine what data can currently be used with statistical confidence in its accuracy.
Modeling and Simulation
Georgia Institute of Technology
Dow
AspenTech
3

RAPID Reaction Software Ecosystem

Intensified processes are spatially and/or temporally coupled systems needing new modeling tools that go beyond systems analysis, and integrate reactor models with molecular scale models of chemical reactions. Current software at the quantum scale (density functional theory (DFT)) and the reactor scale (e.g., CFD) are widespread. In contrast, kinetics codes, especially for heterogeneous catalysis are at the proof-of-concept level due to outstanding technical barriers.
Modeling and Simulation
University of Delaware
Dow
Process Systems Enterprise, Inc.
5

Optimization Modeling for Advanced Syngas to Olefins Reactive Systems

Advanced reactor designs with multiple catalysts are game-changers for process intensification. These reactors transform large, complex processes with multiple reactors to one-shot reactors, where complex reaction mechanisms can be exploited within a single unit. Such designs lead to layered and mixed catalyst beds that overcome equilibrium limitations, manage heat effects and improve product selectivity.
Modeling and Simulation
Carnegie Mellon University
Dow
5

Pages