(685e) Gas Production Strategies and the Impact of Layers on Gas Recovery from Gas Hydrate Reservoir Using the Numerical Simulations
AIChE Annual Meeting
2021
2021 Annual Meeting
Upstream Engineering and Flow Assurance Forum
Phase Behavior and Flow of Reservoir Fluids
Monday, November 15, 2021 - 4:24pm to 4:42pm
An In-house, thermal 3-D finite volume legacy simulator is used with multicomponent- water, methane, and hydrate in four phases â gas, aqueous, hydrate and ice. Energy and mass balance equations are solved in space and time domain to compute the gas recovery from the gas hydrate reservoir. The unconfined reservoir becomes less responsive to the depressurization method for both the vertical as well as horizontal wells. Therefore, the warm water injector is a must along with the depressurization method to recover methane gas from an unconfined gas hydrate reservoir. The different well arrangements and well locations are explored using numerical simulations. The wells placed horizontally are more effective where gas recovery is 48% original gas in place (OGIP) compared to the gas recovery of 22% of OGIP for vertically placed wells. The location of the horizontal injector near the aquifer makes water convection easier and the gas recovery starts from the very beginning. The location of the injector in the low permeability hydrate layer makes the gas recovery difficult for initial days. We also investigate the impact of layering on the gas recovery from the gas hydrate reservoirs. The effective permeability of the topmost layer of hydrate where producer is located plays an important role in gas recovery. The infinite aquifer layer has impact on both the gas and the water recovery because the higher effective permeability of the water layer supports the pressure drop in the gas hydrate reservoir.