Dust Flame Propagation in Industrial Scale Piping - Part 1: Empirical Study in a Conveying Vessel-Pipeline System

Safety and Health Division
AIChE Spring Meeting and Global Congress on Process Safety
April 30, 2013 - 10:15am-10:45am
Dust Flame Propagation in Industrial Scale Piping - Part 1: Empirical Study in a Conveying Vessel-Pipeline System

Thomas M. Farrell1, Jim Vingerhoets2, Jef Snoeys2, John Going1

1 Fike Corporation, 704 SW 10th Street, Blue Springs, MO 64015, USA

2 Fike Europe, Toekomstlaan 52, BE-2200 Herentals, Belgium

The use of pipes to connect vessels and transport hazardous materials, such as flammable gases or dusts, is a common practice in the process industry. The potential of fires and explosions has been recognized for decades and is addressed in standards NFPA 68 [1] and NFPA 69 [2]. The purposes of this paper are to present experimental evidence and to further develop a detailed understanding of combustion propagation in industrial scale piping. The experimental evidence on dust flame propagation is scarce, and specific attention was given to expand the knowledge in this field.

Earlier work [3] studying flame propagation in industrial scale piping focused primarily on the propagation of gaseous flames (propane, ethylene, hydrogen) and conditions for deflagration-to-detonation transition.

The current research program, as a part of an ongoing effort to understand flame propagation fundamentals, was conducted with a focus on dust fuels. A 5m3 vented initiating vessel and interconnected pipeline which incorporates active conveyance capability was used for this program.

A systematic investigation of flame propagation speed and arrival time dependencies upon vessel vent area, fuel concentration, and conveyance velocity is presented. A discussion of propagation in the process flow direction, as well as upstream propagation, is also included. Results of the current research are discussed in light of published explosion protection system design guidelines. This research also provides the empirical basis for a parametric study using computational fluid dynamics (CFD), which is presented in a separate paper [4].


  1. NFPA 68, Standard on Explosion Protection by Deflagration Venting, 2007
  2. NFPA 69, Standard on Explosion Prevention Systems, 2008
  3. K. Chatrathi, J.E. Going, B. Grandestaff, Flame Propagation in Industrial Scale Piping, Process Safety Progress 20 (2001), 286-294.
  4. J. Vingerhoets, T. M. Farrell, J. Snoeys, Dust Flame Propagation in Industrial Scale - Part 2: CFD Study of a Conveying Vessel-Pipeline System, Submitted for 9th Global Congress on Process Safety, San Antonio, April 28 - May 1, 2013.
Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.


Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members Free Free access
Related Topics: