The Application of a Model Predictive Control-Based Approach to CO2 Capture Processes: Towards Operational Cost Minimisation

Sustainable Engineering Forum
2011 AIChE Annual Meeting
AIChE Annual Meeting
October 17, 2011 - 8:00pm

Amine-based chemisorption of CO2 is a promising near term option for the decarbonisation of large, fixed-point CO2 emission sources[1]. However, the operational expenditure (OPEX) associated with this technology imposes a significant energy penalty on the power plant. As it is the solvent which determines the thermodynamic and kinetic efficiency of the process, the design of advanced solvents provides a real opportunity to reduce the OPEX. Typically, when one refers to the dynamic operation of CCS-type processes, it is the transient behaviour of the start-up and shut-down of this process which is considered. However, the so-called steady-state operation of power-plants is itself dynamic, i.e., the flowrate, temperature and composition of the inlet flue-gas can vary in real time. Thus, a given solvent and mode of process operation which may be optimal for a particular operating regime, may be sub-optimal for another operating regime. Consequently, the implementation of advanced control strategies present an important opportunity for the intensification of these processes resulting in a significant reduction in the lifetime operational expenditure associated with CCS systems.

This work focuses on the design of an explicit model predictive controller (MPC)[2] for the real-time control of solvent composition and process operation as successfully implemented in other applications such as [3].To achieve this, we integrate molecular-based fluid theories[4] with high-fidelity process models[5]. Based on this model, an approximate model is developed and a model predictive controller is formulated for the reduced model where our multi-parametric algorithms are applied to derive a suitable and robust explicit MPC controller. By incorporating the explicit controller expressions (control laws) in the original model, a validation step is then carried out.

In this way, we present a unified-systems based methodology for the OPEX reduction of solvent-based post-combustion CO2 capture processes.


[1] IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the IPCC, Cambridge University Press, Cambridge, United Kingdom and New York, USA

[2] Pistikopoulos, E.N., Bozinis, N., Dua, V., Perkins, J. & Sakizlis, V. (2004). Improved Process Control, European Patent EP1399784

[3] Arce A., del Real A. J., Bordons C. and Ramírez D. R. IEEE Transactions on Industrial Electronics, 57(6), 1892-1905, 2010.

[4] Mac Dowell, N. et al., Ind. Eng. Chem. Res., 49(4), 1883-1899, 2010

[5] Mac Dowell, N. et al., ESCAPE 20, 2010

Professional Development Hours
0.5 PDHs
You will be able to download and print a certificate for these PDH credits once the content has been viewed. If you have already viewed this content, please click here to login.
Presenter(s): 

Would you like to access this content?

No problem. You just have to complete the following steps.

You have completed 0 of 2 steps.

  1. Log in

    You must be logged in to view this content. Log in now.

  2. Purchase Technical Presentation

    You must purchase this technical presentation using one of the options below.
    If you already purchased this content recently, please click here to refresh the system's record of ownerships.

Pricing

Credits 0.5 Use credits
List Price $25.00 Buy now
AIChE Members $15.00 Buy now
AIChE Undergraduate Student Members Free Free access
AIChE Graduate Student Members $15.00 Buy now