Modular Catalytic Partial Oxidation Reactors Using Microstructured Catalyst Structures with Combined High Thermal Conductivity and Flame Extinction Capacity to Enhance Process Safety Margins and Enable High Per Pass Conversion and High Selectivity

This project looks to use IntraMicron’s platform technology of microfibrous entrapped catalysts (MFEC) to create a safer and more efficient process for the production of ethylene oxide (EO). Ethylene oxide is produced via the exothermic reaction of oxygen with ethylene. Because of the poor heat transfer and flow distribution in current packed bed reactors, hotspots form in the bed, resulting in poor selectivity. To mitigate these issues, EO processes are typically operated with sub-stoichiometric oxygen concentrations resulting in only a 10-12% ethylene conversion per pass.

Investigators

Bruce Tatarchuck
Charles E Gavin III Prof & Dir

Date approved

July 01, 2018
Current TRL
3

Formation of RAPID Center for Process Modeling

RAPID aims to improve energy efficiency, reduce feedstock waste, and improve productivity by promoting modular chemical process intensification (PI) for processing industries in the U.S. manufacturing sector. To facilitate consistent and objective evaluation of performance metrics of various PI projects, RAPID has established this program to support and/or perform first principles-based process modeling for both baseline and intensified processes.

Investigators

Chau-Chyun Chen
Professor

Date approved

July 01, 2017

Modular Catalytic Desulfurization Units for Sour Gas Sweetening

This project focuses on overcoming manufacturing and supply chain issues associated with a much needed modular technology solution in the gas processing sector. The team will look to take an existing technology for sour gas cleanup (processing scale on order of 1 T/day sulfur or 1 MMSCFD gas processed) and look to improve benefit vs. cost through pilot testing to improve performance and manufacturing design/analysis to determine highest leverage cost reduction steps. The resulting technology will be piloted in a field test to confirm economic assessments.

Investigators

Paul Dimick
General Manager

Focus Areas

Date approved

November 01, 2017
Current TRL
5

Development and Demonstration of Novel Thermal Technologies for Enhanced Air-Side and Two-Phase Performance of CPI-Relevant Heat Exchangers

Almost every process in the chemical and processing industries (CPI) involves heat transfer. Integrated functioning of a variety of heat exchangers with gas, liquid, and vapor/liquid flows of single- and multi-component working fluids, is critical in any processing plant. Improving air and/or process-side performance can significantly reduce energy consumption and capital costs. This project is looking at the novel geometries and mechanical actuation to enhance heat exchanger performance.

Investigators

Ari Glezer

Focus Areas

Date approved

November 01, 2017
Current TRL
6

Pages