Modeling the Total Cost of Ownership for Scaling-Up via Modular

This project represents a collaboration between the RAPID Module Manufacturing Focus Area (MMFA) and the Construction Industry Institute, within the Cockrell School of Engineering at the University of Texas at Austin. The research objective is to model the total cost of ownership (TCO) for scaling up via modular chemical process intensification (MCPI) and apply this model to four RAPID projects over the remaining course of the effort.

Investigators

Brian Paul

Partner Organizations

Oregon State University

Focus Areas

Deploying Intensified, Automated, Mobile, Operable, and Novel Designs "DIAMOND" For Treating Shale Gas Wastewater

One of the key technology gaps identified in the RAPID roadmap was to develop design tools and practices that would reduce the need for non-recurring engineering design costs in modular applications. This project is focused on developing integrated design and operating approaches for modular systems that can be deployed in the treatment of flowback and produced water resulting from shale gas production. Because of the highly distributed nature and variable characteristics of shale-gas wastewater (SGWW), there is a unique opportunity to deploy modular systems.

Investigators

Mahmoud El-Halwagi

Partner Organizations

Texas A&M University

Focus Areas

On Demand Treatment of Wastewater Using 3D-Printed Membrane

This project will demonstrate on-demand separation of multicomponent and multiphase water-oil mixtures using 3D-printed membranes. It is focused on wastewater treatment that is critical to the chemical industry. Application and adoption of intensified process design and 3D-printed membranes offers the prospect of revolutionizing the multicomponent and multiphase water-oil separation.

Investigators

Lei Li

Partner Organizations

University of Pittsburgh

Focus Areas

Modular Catalytic Partial Oxidation Reactors Using Microstructured Catalyst Structures with Combined High Thermal Conductivity and Flame Extinction Capacity to Enhance Process Safety Margins and Enable High Per Pass Conversion and High Selectivity

This project looks to use IntraMicron’s platform technology of microfibrous entrapped catalysts (MFEC) to create a safer and more efficient process for the production of ethylene oxide (EO). Ethylene oxide is produced via the exothermic reaction of oxygen with ethylene. Because of the poor heat transfer and flow distribution in current packed bed reactors, hotspots form in the bed, resulting in poor selectivity. To mitigate these issues, EO processes are typically operated with sub-stoichiometric oxygen concentrations resulting in only a 10-12% ethylene conversion per pass.

Investigators

Bruce Tatarchuck

Partner Organizations

Auburn University

Pages