(606f) A Modular Approach to Process Integration and Intensification
AIChE Annual Meeting
2019
2019 AIChE Annual Meeting
Computing and Systems Technology Division
Process Intensification through Process Systems Engineering
Wednesday, November 13, 2019 - 5:05pm to 5:24pm
In this work, we propose a systematic approach for process synthesis, integration, and intensification based on recent extensions of the Generalized Modular Representation Framework [8-11]. Herein, the chemical processes are represented as aggregated multifunctional mass/heat exchange modules with which intensification possibilities can be discovered without a pre-postulation of equipment or flowsheet configurations. Driving force constraints, derived from total Gibbs free energy change, are employed to characterize mass/heat transfer feasibility by exploiting the general thermodynamic space, and thus result in a more compact modular representation of the chemical systems. Mass and/or heat integration are simultaneously addressed in the superstructure representation of the modular network, without pre-postulation of steam properties as rich/lean streams or hot/cold streams. The resulting synthesis problem is formulated as a mixed integer nonlinear programming optimization problem (MINLP), where both process cost performances and environmental regulations can be accounted for. Three case studies are presented to showcase the proposed approach for process integration and intensification, namely: (i) heat-integration process, (ii) extractive separation process with heat & mass integration, (ii) reactive separation process.
Reference
- Bielenberg, J., & Palou-Rivera, I. (2019). The RAPID Manufacturing Institute â Reenergizing US Efforts in Process Intensification and Modular Chemical Processing. Chemical Engineering and Processing-Process Intensification.
- Tian, Y., Demirel, S. E., Hasan, M. M. F., & Pistikopoulos, E. N (2018). An Overview of Process Systems Engineering Approaches for Process Intensification: State of the Art. Chemical Engineering and Processing: Process Intensification, 133, 160-210.
- Tula, A. K., Babi, D. K., Bottlaender, J., Eden, M. R., & Gani, R. (2017). A computer-aided software-tool for sustainable process synthesis-intensification. Computers & Chemical Engineering, 105, 74-95.
- Li, J., Demirel, S. E., & Hasan, M. F. (2018). Process integration using block superstructure. Industrial & Engineering Chemistry Research, 57(12), 4377-4398.
- Papalexandri, K. P., Pistikopoulos, E. N., & Floudas, A. (1994). Mass-exchange networks for waste minimization-a simultaneous approach. Chemical engineering research & design, 72(3), 279-294.
- Pichardo, P., & Manousiouthakis, V. I. (2017). Infinite DimEnsionAl State-space as a systematic process intensification tool: Energetic intensification of hydrogen production. Chemical Engineering Research and Design, 120, 372-395.
- Demirel, S. E., Li, J., & Hasan, M. F. (2017). Systematic process intensification using building blocks. Computers & Chemical Engineering, 105, 2-38.
- Papalexandri, K. P., & Pistikopoulos, E. N. (1996). Generalized modular representation framework for process synthesis. AIChE Journal, 42(4), 1010-1032.
- Ismail, S. R., Proios, P., & Pistikopoulos, E. N. (2001). Modular synthesis framework for combined separation/reaction systems. AIChE Journal, 47(3), 629-649.
- Proios, P., Goula, N. F., & Pistikopoulos, E. N. (2005). Generalized modular framework for the synthesis of heat integrated distillation column sequences. Chemical engineering science, 60(17), 4678-4701.
- Tian, Y., & Pistikopoulos, E. N. (2019). Synthesis of Operable Process Intensification SystemsâSteady-State Design with Safety and Operability Considerations. Industrial & Engineering Chemistry Research. DOI:10.1021/acs.iecr.8b04389.