(624c) Utilization of Block Copolymers as Ultrafiltration Membranes

Phillip, W. A. - Presenter, University of Minnesota
Amendt, M. - Presenter, University of Minnesota
O'Neill, B. - Presenter, University o Minnesota
Cussler, E. L. - Presenter, University of Minnesota

Ultrafiltration membranes made by phase inversion are the current standard because of high fluxes, strong mechanical integrity and low cost. However, the broad distribution of pore sizes in these membranes is implicated in fouling. New ultrafiltration membranes should posses a narrower pore size distribution than current phase inversion membranes. Membranes made from block copolymers are an alternative because the copolymers can self assemble into pores on a nanometer scale. These pores are nearly monodisperse. Unfortunately, the porous copolymer membranes have lacked mechanical robustness.

Our work combines polymerization-induced phase separation and a "doubly reactive" block copolymer to make robust nanoporous membranes with a well defined pore structure. Gas and liquid transport measurements confirm the pore structure spans the films. Transport across these films agrees with predictions based on BET and SAXS so macroscopic cracks do not dominate transport. The demonstrated molecular weight cut-off of dextrans is significantly sharper for our films than a commercial membrane said to have a similar cut-off. Fouling studies will determine if further development of these materials is warranted.


This paper has an Extended Abstract file available; you must purchase the conference proceedings to access it.


Do you already own this?



AIChE Members $150.00
AIChE Graduate Student Members Free
AIChE Undergraduate Student Members Free
Non-Members $225.00