(342e) Machine Learning the COSMO Model for Predicting Thermodynamics of Electrolyte Mixtures
AIChE Annual Meeting
2021
2021 Annual Meeting
Topical Conference: Applications of Data Science to Molecules and Materials
Applications of Data Science in Molecular Sciences II
Tuesday, November 9, 2021 - 5:06pm to 5:18pm
The COSMO-SAC model uses theory and empirical parameterization to predict liquid-vapor and liquid-solid properties using first-principles calculations. However, obtaining activity coefficients required for parameterizing the COSMO-SAC model is costly and limited to a select chemical space. In this work, we explored how machine learning methods could learn the COSMO-SAC model and bridge density functional theory calculations to liquid phase thermodynamic properties. Our data-driven approaches use existing databases for sigma profiles of organic solvents. Our models attempt to learn using the data of different fidelity to learn activity coefficients of mixtures. First, an optimal machine learning model is constructed for each dataset. Our machine learning algorithms use the sigma-profile as an input feature to predict binary mixtures' activity coefficients using support vector machines. Each dataset uses different choices of functionals, methods, and basis sets. Therefore, our ensemble model attempts to predict corrected activity coefficients given the combination of all the model outputs. The activity coefficients used for training are generated using the COSMO-SAC model. This approach enables the extraction of meaningful information from existing datasets to improve the COSMO-SAC model for obtaining thermodynamic properties of electrolyte mixtures. With the liquid phase activities, we can identify electrolyte mixtures that meet desired phase equilibria conditions.