(322d) Condition Monitoring of Pharmaceutical Processes Under a Probabilistic Framework
AIChE Annual Meeting
2020
2020 Virtual AIChE Annual Meeting
Pharmaceutical Discovery, Development and Manufacturing Forum
Pharma 4.0: Digitalization, process modeling, and process control
Tuesday, November 17, 2020 - 8:45am to 9:00am
Even with the abundance of data brought about by the digitalization of processes, uncertainty is still prevalent. Aside from the inability to directly measure the condition of a process, the variability of operating parameters, e.g. raw materials, environment, personnel tendencies, can directly affect a process and hence affect the accuracy of the process model.
The explicit expression of uncertainty, of predictions and beliefs deduced from a model, may be reduced to calculation of the probability of that prediction/belief. With condition monitoring, this means using the data to estimate the probability of the condition of the system, and then updating these estimates to reflect new data in real time. Bayesâ theorem fits well into this paradigm, since it provides a mechanism to correctly update probabilities (as a measure of uncertainty) in light of new data, hopefully reducing uncertainty in predictions.3
In this work, we demonstrate the use of Bayesian methods and the advantages of implementing condition monitoring under a probabilistic framework. We illustrate this approach using cases drawn from the operation of the Continuous Pharmaceutical Tableting Pilot Plant at Purdue University, which is a state-of-the-art high-bay facility that can be configured to produce tablets via direct compaction, dry granulation, or wet granulation. Moreover, the leading software for real-time manufacturing management would be used for these cases, particularly PI System (OSIsoft) and SmartFactory Rx (Applied Materials). The former will be mainly the data historian4 while the latter provides an environment for extracting the data from the historian and processing it for the purposes of operations productivity, analytics and control, knowledge management, and predictive maintenance.5 This environment would be ideal for implementing Bayesian methods for condition monitoring.
2 C.M. Bishop, Pattern Recognition and Machine Learning (Springer, 2016).
4 OSIsoft, OSIsoft PI System (n.d.).
5 Applied Materials, Applied Materials Automation Software (n.d.).