(320d) Continuum Rheology of Dense Granular Flows Near the Flow-Arrest Transition
AIChE Annual Meeting
2020
2020 Virtual AIChE Annual Meeting
Particle Technology Forum
Particulate Systems Dynamics and Modeling: Discrete and Continuum Approaches
Thursday, November 19, 2020 - 8:45am to 9:00am
Granular materials exhibit a dynamical transition between arrested and steady flowing states at a critical ratio of shear stress and pressure. Although their simple-shear steady-state rheology is well characterized, the transition itself is accompanied by interesting dynamical phenomena such as transient dilatancy and shear jamming, which are not well understood. This transition is highly stochastic, which makes its continuum modeling quite challenging. Additional complications are introduced by a dependence on loading paths, with important differences between the rheology of shear-induced and compression/extension-induced flows. We demonstrate such complex rheological scenarios that emerge at the flow-arrest transition of granular materials using stress-controlled discrete element simulations. We introduce and calibrate a continuum rheological model, derived from a dissipative rheological theory, which is applicable to viscometric and extensional flow regimes, and incorporates important rheological features such as normal stress effects and flow-arrest transitions.