Numerical Analyses of the Effect of the Impurity in the Gas on the Solubility Trapping in the CO₂ Sequestration
Lingyu Mu, Xinwei Liao, Xiaoliang Zhao, Zhiming Chen, Langtao Zhu and Biao Luo, China University of Petroleum(Beijing), Beijing, China

Abstract
The CO₂ dissolved in the aquifer will increase the density of brine, which can result in the instability of the gravity and prompt the onset of the viscous finger. The viscous finger will lead to the convective mix, accelerating the process of CO₂ solution in the brine. However, the gas stream in the CO₂ storage usually contains the impurities such as N₂, O₂, and SO₂, which can change the density difference in the process of solution, and affect the solubility trapping in the CO₂ sequestration.

In this paper, a numerical simulation method was used to study the effect of different impurities on the solubility trapping in the process of CO₂ storage. Firstly, based on the PR-HV model, this paper calculated the solubility of CO₂, N₂, O₂, and SO₂ with different temperature and salinity and analysed the variation of the solubility. Then a multi-component numerical simulation model based on a certain aquifer layer was established to compare the CO₂ dissolution rate and the onset time of the instability and analyze the influence of impurities in the CO₂ stream on the solubility trapping. Finally, this paper clarified the impact on the CO₂ storage and suggested that the concentration of the impurities should be controlled in a rational range for the perspective of the economy and efficiency.

The results show that the solubility of CO₂ is higher than N₂ and O₂ in the saline water, and close to that of SO₂. We applied the solubility data to the numerical simulation. The results of the numerical simulation shows that with the increase of the concentration of N₂ or O₂, CO₂ dissolution rate has a decrease, and the onset time of the instability has an increase. It means the longer time CO₂ plume keeping in the state of good flowing capability and low density. The onset of viscous finger will be postponed, leading to a negative influence on the solubility trapping and the risk of the CO₂ leak through fractures and faults. On the contrary, SO₂ can shorten the onset time of the instability, which accelerates the viscous finger and prompts the solubility trapping. A further conclusion is that the effect of SO₂ on the viscous fingering is more significantly than N₂ and O₂.

This paper deepens the understanding about the effect of the impure CO₂ on the solubility trapping, and clarifies the effect of different impurities.
1 Introduction
Global warming and greenhouse effect caused by the emission of CO$_2$ and other greenhouse gases are attracting more and more serious public concern. CO$_2$ capture and storage (CCS) is one of the most promising methods to reduce the emission of greenhouse gases, which refers to the process consisting of the separation of CO$_2$ from industrial and energy-related sources, transport to a storage location and long-term isolation from the atmosphere, shown in Figure 1. The CCS system consists of capture, transport, geological storage, ocean storage, mineral carbonation, industrial utilization, etc.[1-6].

[Image of the CCS system]

Figure 1 Schematic diagram of CCS system

Geological storage is generally regarded as the most mature and promising option for isolating the captured CO$_2$ from the atmosphere[7]. Geological storage means that CO$_2$ is stored in the geological structure, such as oil and gas fields, coal beds or deep saline water[7], as shown in Figure 2. CO$_2$ enhanced oil/gas (EOR/EGR) technology has been very mature with the development of the oil industry[9, 10]. Because of characteristics of the oil industry, CO$_2$ is generally used for recycling and a great quantity of gas will be produced to the ground with oil, which cannot meet the storage capacity requirements and long-term isolation. Coal beds stored with CO$_2$ need long-term isolation and cannot be mined for tens to hundreds of millions of years[3]. However, in hundreds of years, we may mine the coal beds due to advances in technology and energy demand, which means that CO$_2$ storage in coal beds has certain limitations. CO$_2$ stored in the deep saline water will not influence the ecosystem, and storage capacity is expected to reach 1000~10000 giga tons[11]. It is believed that deep saline formations have by far the largest capacity for CO$_2$ storage and are much more widespread than other options.

[Image of options for storing CO2 in deep underground geological formations]

Figure 2 Options for storing CO2 in deep underground geological formations

There are four main mechanisms for geological storage of CO$_2$[3]. A low-permeability geological barrier such as mudstone or halite impedes the migration of buoyant CO$_2$ via high capillary pressure, which is
how the stratigraphic and structural trapping mechanism acts, shown in Figure 3 (a). However, CO$_2$ will enter the caprock when the pressure of the reservoir is high enough$^{[3]}$. With the migration of CO$_2$, some CO$_2$ is trapped in the pores of rock due to the capillary pressure (gas-liquid interface tension)$^{[12]}$, shown in Figure 3 (b). Residual trapping plays an important role at the early stage of CO$_2$ storage, for core-scale experiments show that residual trapping occurs in a few days or months$^{[12]}$. When CO$_2$ dissolves into the saline water, the brine saturated with CO$_2$ is denser and will sink, shown in Figure 3 (c). The content of dissolved CO$_2$ will increase with time elapses. Solubility trapping is a major way for CO$_2$ geological storage, and the low flow rate of the formation water can ensure the stability of long-term storage$^{[13]}$. CO$_2$ dissolved in the brine will react with rocks to form carbonate mineral precipitation, shown in Figure 3 (d), thus CO$_2$ is stored with the most stable state$^{[14, 15]}$. Although this chemical reaction exists at the early stage, mineral trapping is a rather long process that may last tens of thousands of years. The type of the trapping mechanism depends on the specific geological conditions, and in general it contains the mechanisms mentioned above. The occurrence of a specific mechanism depends on the length of time and migration of the CO$_2$. With the increase of time, the dominated trapping mechanism will change, and the security of CO$_2$ storage gradually increases, shown in Figure 4.

For solubility trapping has a bearing on CO$_2$ geological storage, we mainly study the mechanism of the
solubility trapping in this paper. The dissolved CO$_2$ in the aquifer will increase the density of brine[16, 17]. The increase of the density is heterogeneous in the different part of the formation. A local increase of density, coupled with the heterogeneity of the aquifer such as permeability heterogeneity[18], will result in the instability of the gravity and prompt the onset of the viscous finger[19-22]. The viscous finger will lead to the convective mix, accelerating the process of CO$_2$ solution in the brine and reducing the possibility of CO$_2$ leakage. In view of its importance for long-term CO$_2$ storage, the convective mix driven by density difference has aroused many researchers’ attention. Linear steady-state analysis and numerical simulation are two commonly used methods[23-27].

Table 1 The range of contents of the impurities

<table>
<thead>
<tr>
<th>Component</th>
<th>Capture after combustion</th>
<th>Capture before combustion</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_4$</td>
<td><0.010</td>
<td><0.035</td>
</tr>
<tr>
<td>N$_2$</td>
<td><0.170</td>
<td><0.600</td>
</tr>
<tr>
<td>H$_2$S</td>
<td>trivial</td>
<td><3.400</td>
</tr>
<tr>
<td>CO</td>
<td><0.001</td>
<td><0.400</td>
</tr>
<tr>
<td>O$_2$</td>
<td><0.010</td>
<td>trivial</td>
</tr>
<tr>
<td>NO$_x$</td>
<td><0.005</td>
<td>/</td>
</tr>
<tr>
<td>SO$_x$</td>
<td><0.001</td>
<td>/</td>
</tr>
<tr>
<td>H$_2$</td>
<td>trivial</td>
<td><3.000</td>
</tr>
<tr>
<td>Ar</td>
<td>trivial</td>
<td><0.050</td>
</tr>
</tbody>
</table>

Whichever method of is used to capture CO$_2$, the CO$_2$ stream contains a certain species and concentration of impurities, such as N$_2$, O$_2$, Ar, SO$_x$, NO$_x$, H$_2$S, H$_2$ and so on, which depends on the fuel used, the energy conversion process and the CO$_2$ capture technology[28]. The power industry is the main source of CO$_2$ emissions, whose main methods of CO$_2$ capture are capture after the combustion and capture before the combustion. The contents of the impurities[29] in the two methods are listed in Table 1. Even the smallest amount of the impurities could have a profound effect.

Table 2 The properties of the gases

<table>
<thead>
<tr>
<th>Component</th>
<th>Molar weight(g/mol)</th>
<th>Critical temperature(°C)</th>
<th>Critical pressure(MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$</td>
<td>44</td>
<td>31.04</td>
<td>7.38</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>64</td>
<td>157.49</td>
<td>7.88</td>
</tr>
<tr>
<td>O$_2$</td>
<td>32</td>
<td>-183.0</td>
<td>5.08</td>
</tr>
<tr>
<td>N$_2$</td>
<td>28</td>
<td>-147.05</td>
<td>3.39</td>
</tr>
</tbody>
</table>

The dissolution of CO$_2$ can increase the density of the formation fluid and cause convective mix[25, 26]. However, the physical and chemical properties of the impurities co-injected with CO$_2$ is markedly different with those of CO$_2$, which may have an impact on the process of CO$_2$ storage[30]. According to the content of the impurities, we choose SO$_2$, O$_2$, and N$_2$ as representative to study the effect of the impurities on the solubility trapping. The properties of CO$_2$, SO$_2$, O$_2$, and N$_2$ are listed in Table 2. The molar weight of the SO$_2$ is heavier than that of CO$_2$, while the molar weight of O$_2$ and N$_2$ are lighter. In other words, the increase of the density difference when SO$_2$ dissolves in the brine is bigger than that of the other three gases. The critical temperature and pressure of O$_2$ are lower than that of CO$_2$. Therefore, the mixture of CO$_2$ and O$_2$ will exist as supercritical fluid in the aquifer. Moreover, N$_2$ is in the same condition. SO$_2$ has a similar critical pressure with CO$_2$, while the critical temperature of SO$_2$ is rather
higher. However, the mixture of CO\textsubscript{2} and SO\textsubscript{2} can be regarded as supercritical fluid considering the content of SO\textsubscript{2} in the mixture.

2 The dissolution law of the impurities

2.1 Theoretical model of solubility

Peng-Robinson equation of state cannot apply to the activity calculation of nonpolar substances. Besides, the application of Vander Waals mixing rule is limited, for the gas-liquid mixture is a non-ideal and highly asymmetric system[31]. Therefore, fugacity coefficient model established by Huron[32] and Peng-Robinson equation of state are adopted to characterize the thermodynamic properties of the CO\textsubscript{2}-water system. PR-HV model[33] is as followed:

\[
p = \frac{RT}{v - b_m} - \frac{a_m}{v(v+b_m) + b_m(v-b_m)} \tag{1}
\]

\[
a_m = b_m \left[\sum_{i=1}^{n} x_i \alpha_i \frac{G_{\infty}^E}{c_0} \right] \tag{2}
\]

\[
b_m = \sum_{i=1}^{n} x_i b_i \tag{3}
\]

\(a_i, b_i\) and \(\alpha_i\) are expressed by the following formulas:

\[
a_i = 0.477235 \frac{R^2T_i^2}{p_i} \alpha_i \tag{4}
\]

\[
b_i = 0.077796 \frac{RT_i}{p_i} \tag{5}
\]

\[
\alpha_i = \left[1 + m \left(1 - T_i^{0.5} \right) \right]^2 \tag{6}
\]

Without the defined pressure, the Gibbs free energy is calculated as follows:

\[
G_{\infty}^E = \sum_{i=1}^{n} x_i \sum_{j=1}^{n} \frac{x_j C_{ji} G_{ji}}{\sum_{k=1}^{n} x_k G_{ki}} \tag{7}
\]

According to the principle of chemical thermodynamics, the fugacity coefficient of component i with (T, p) as independent variable is:

\[
RT \ln \varphi_i = \frac{\partial}{\partial n_i} \left[\sum_{v_i} \left(p - \frac{nRT}{v_i} \right) dv_i \right] T, v_i, n_{j \neq i} - RT \ln Z \tag{8}
\]

Then, the fugacity coefficient of the mixture calculated by PR-HV model is:

\[
\ln \varphi_m = \frac{b_m}{b_m} (Z_m - 1) - \ln \left[Z_m \left(1 - \frac{b_m}{v_m} \right) \right] - \frac{1}{2\sqrt{2}RT} \left[\frac{a_i}{b_i} - \frac{RT \ln \varphi_i}{c_0} \right] \ln \left[\frac{v_m + (\sqrt{2}+1)b_m}{v_m - (\sqrt{2}-1)b_m} \right] \tag{9}
\]

2.2 The dissolution of the gases in saline water

PR-VW model is used to calculate the solubility of CO\textsubscript{2}, SO\textsubscript{2}, O\textsubscript{2} and N\textsubscript{2} in different temperature and salinity. The solubility of CO\textsubscript{2}, SO\textsubscript{2}, N\textsubscript{2} and O\textsubscript{2} in pure water is listed in Table 3. The solubility of N\textsubscript{2} is
the smallest, and is the same order of magnitude as that of O$_2$. SO$_2$ is the most soluble within the impurities, whose solubility is about thousands of times than N$_2$ and scores of times than CO$_2$. With the temperature increases, the solubility of the gases decrease. The decreases in the solubility of CO$_2$, SO$_2$, N$_2$ and O$_2$ are 82.22%, 82.45%, 68.02%, and 67.09% respectively. The solubility of the gases in the saline water is shown in Figure 5, Figure 6, Figure 7 and Figure 8. With the salinity increases the solubility of the gases decrease.

<table>
<thead>
<tr>
<th>Temperature(℃)</th>
<th>CO$_2$</th>
<th>SO$_2$</th>
<th>N$_2$</th>
<th>O$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.3333</td>
<td>228</td>
<td>0.0295</td>
<td>0.0691</td>
</tr>
<tr>
<td>10</td>
<td>2.5185</td>
<td>171</td>
<td>0.0243</td>
<td>0.0561</td>
</tr>
<tr>
<td>20</td>
<td>1.6889</td>
<td>114</td>
<td>0.0190</td>
<td>0.0435</td>
</tr>
<tr>
<td>30</td>
<td>1.2444</td>
<td>79</td>
<td>0.0160</td>
<td>0.0359</td>
</tr>
<tr>
<td>40</td>
<td>0.9778</td>
<td>56</td>
<td>0.0136</td>
<td>0.0309</td>
</tr>
<tr>
<td>50</td>
<td>0.7704</td>
<td>45</td>
<td>0.0112</td>
<td>0.0268</td>
</tr>
<tr>
<td>60</td>
<td>0.5926</td>
<td>40</td>
<td>0.0094</td>
<td>0.0227</td>
</tr>
</tbody>
</table>

2 Numerical simulation model

To study the effect of the impurities on the solubility trapping, a numerical simulation model is established to simulate the process of the solubility trapping in the CO$_2$ sequestration. The numerical model is established with the commercial software ECLIPSE 300. As shown in Figure 9, there is an impermeable caprock impeding the migration of buoyant CO$_2$ and the CO$_2$ stream is injected from the injection well to the saline water. The schematic diagram of the numerical simulation model is shown in Figure 10 and the parameters of the model is listed in Table 4.
Table 4 Reservoir parameters

<table>
<thead>
<tr>
<th>Reservoir parameters</th>
<th>Value</th>
<th>Reservoir parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of the model</td>
<td>30×10×30</td>
<td>Rock compressibility</td>
<td>5.8×10⁻⁴ MPa⁻¹</td>
</tr>
<tr>
<td>Top depth</td>
<td>1400m</td>
<td>Initial pressure</td>
<td>17.4 MPa</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.27</td>
<td>Temperature</td>
<td>32.2°C</td>
</tr>
<tr>
<td>Permeability X</td>
<td>400mD</td>
<td>irreducible water saturation</td>
<td>0.3</td>
</tr>
<tr>
<td>Permeability Y</td>
<td>400mD</td>
<td>salinity</td>
<td>0~20</td>
</tr>
<tr>
<td>Permeability Z</td>
<td>40mD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ten kinds of the compositions are set to study the impact of the concentration of the impurities, shown in Table 5. The range of the concentration of the impurities is 0% ~ 10% according to the composition of the CO₂ streams captured.

Table 5 Injected gas compositions

<table>
<thead>
<tr>
<th>Injected gas compositions (mol%)</th>
<th>Dissolved gas compositions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO₂(×10⁻⁵ mol%)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>100% CO₂</td>
<td>2095.30</td>
</tr>
<tr>
<td>98% CO₂+2% SO₂</td>
<td>2094.99</td>
</tr>
<tr>
<td>95% CO₂+5% SO₂</td>
<td>2094.19</td>
</tr>
<tr>
<td>90% CO₂+10% SO₂</td>
<td>2093.50</td>
</tr>
<tr>
<td>98% CO₂+2% N₂</td>
<td>2047.20</td>
</tr>
<tr>
<td>95% CO₂+5% N₂</td>
<td>1981.70</td>
</tr>
<tr>
<td>90% CO₂+10% N₂</td>
<td>1876.80</td>
</tr>
<tr>
<td>98% CO₂+2% O₂</td>
<td>2049.48</td>
</tr>
<tr>
<td>95% CO₂+5% O₂</td>
<td>1983.98</td>
</tr>
<tr>
<td>90% CO₂+10% O₂</td>
<td>1879.08</td>
</tr>
</tbody>
</table>

3 Results and discussion
The change of the gas compositions is expected to have an impact on the convection process. Different compositions of the CO₂ streams will result in different density changes. According to the compositions of injection gases (Table 5), we can get the variations of density difference with different impurity concentrations, as shown in Figure 11.
For the convective mix can accelerate the process of CO$_2$ solution in the brine and reduce the possibility of CO$_2$ leakage, Onset time of the instability represents the validity of the solubility trapping mechanism to a certain extent. There is no commonly accepted definition of onset time of the instability. According to the method proposed by George S.H. Pau$^{[34]}$, onset time of the instability is defined as the time when dissolution rate, referring to CO$_2$ molar flux from top boundary to the simulated region, is 2% higher than diffusive flux. Although the process of the convection is complicated and it is difficult to quantify, the total inventory of CO$_2$ dissolved into the saline water is rather stable and measured. Eventually, we choose dissolution rate, onset time and total inventory dissolved as the parameters of the impacts of different SO$_2$, N$_2$ and O$_2$ concentrations on solubility trapping.

3.1 Dissolution rate and onset time of the instability

The dissolution rate of CO$_2$ is an important parameter of solubility trapping. As shown in Figure 12, Figure 13 and Figure 14, the dissolution rate can be divided into three stages. These are diffusion-dominated stage, convection-dominated stage and convection-decay stage. Before the process of the convection, the downward transport of the dissolved gas is dominated by molecular diffusion and the dissolution rate decays at the rate of $t^{-0.5}$. At this stage, the concentrations of the impurities have a limited influence on the dissolution rate. The dissolution rate decreases slightly with the increase of the concentrations of N$_2$ and O$_2$ (Figure 13 and Figure 14). At the convection-dominated stage, due to the collision, fusion and merging of the viscous finger, the dissolution rate curve exhibits a significant irregular change, which also denotes the inherent instability of the convection process. At this stage, the effect of the impurities on the dissolution rate is much greater than the diffusion-dominated stage. N$_2$ and O$_2$ will reduce the dissolution rate of CO$_2$ stream and SO$_2$ will increase the dissolution rate on the contrary. With the increase of concentration of the SO$_2$, the dissolution rate will increase. By contrast, the dissolution rate will decrease with the increase of the concentration of N$_2$ / O$_2$. Under the same impurity concentration, the variation of the dissolution rate of CO$_2$-SO$_2$ system is much larger than that of CO$_2$-N$_2$ system or CO$_2$-O$_2$ system. At the convection-decay stage, the dissolution rate decreases and molecular diffusion becomes the dominant fluid transport mechanism again. As a result, the difference among the dissolution rates of the impurities are also quite small.
Figure 15 shows the onset time of the impurities with different concentrations. With the increase of concentration of the impurities, the onset time of CO$_2$-SO$_2$ system decreases and the onset time of CO$_2$-N$_2$/CO$_2$-O$_2$ system increases. Moreover, the decrease of onset time of CO$_2$-SO$_2$ system is greater than the increase of the CO$_2$-N$_2$ system and CO$_2$-O$_2$ system increases. The increase of onset time of CO$_2$-N$_2$ system is slightly greater than that of CO$_2$-O$_2$ system. The inclusion of N$_2$ and O$_2$ in the CO$_2$ streams delays the onset time, which is negative to the dissolution of CO$_2$ and the solubility trapping mechanism. SO$_2$ will encourage the convection and is conducive to CO$_2$ storage.

3.2 Total inventory of CO$_2$ dissolved

The total inventory of CO$_2$ dissolved into the saline water is stable and can be used to measure the efficiency of solubility trapping mechanism. Figure 16, Figure 17 and Figure 18 show the CO$_2$ inventory with different concentrations of the impurities at the early stage. Figure 19, Figure 20 and Figure 21 show the CO$_2$ inventory with different concentrations of the impurities at the end of the simulations. Since the convection can increase the dissolution rate of CO$_2$ largely, the total inventory of CO$_2$ dissolved is much larger than the total inventory of CO$_2$ diffused after the onset of the convection. At the diffusion-dominated stage, the total inventory of CO$_2$ dissolved is equivalent to the total inventory of CO$_2$ diffused. With the concentration of SO$_2$ increasing, the total inventory of CO$_2$ increases significantly. With the concentration of N$_2$ and O$_2$ increasing, the total dissolved CO$_2$ inventory decreases slightly.
3.3 The effect of the salinity

According to the dissolution rule of the impurities in the brine mentioned above, with the salinity increases the solubility of the gases decrease, which will decrease the dissolution rate of the CO$_2$. The
increase of the salinity will lead to the decrease of onset time of the instability, shown in Figure 22. Furthermore, total inventory of CO₂ dissolved will decrease with the increase of the salinity, shown in Figure 23.

4 Conclusions and future work

The presence of impurities in the CO₂ have a significant impact on the CO₂ storage. It will be costly to remove the impurities in the CO₂ stream. So allowing the presence of impurities in the CO₂ streams will cut down the cost of the CO₂ capture. However, the impurities have a complex effect on the process of the CO₂ storage. In this paper, a numerical simulation model considering dissolution and diffusion is established by Eclipse to simulate the effect of the impurities on the solubility trapping. The convection driven by the density difference will encourage the dissolution of CO₂ and increase the dissolution rate apparently in the solubility trapping mechanism. The dissolution of gas in the aquifer will change the density of brine. SO₂ is the most soluble within the impurities, whose solubility is about thousands of times than N₂ and scores of times than CO₂. Moreover, the salinity of the formation water have a significant effect on the solubility. The density difference caused by the gases will have a variation. When the gases is co-injected with CO₂ into the formation, the process of solubility trapping will be influenced. With the concentration of O₂ or N₂ increasing, the onset time of the instability will be postponed. The dissolution rate and the total inventory of CO₂ dissolved into the formation water will decrease. On the contrary, SO₂ will reduce the onset of the instability and increase the dissolution rate and the total inventory. In a word, SO₂ is conducive to CO₂ storage, while N₂ and O₂ are negative to the CO₂ storage. Besides, the effect of SO₂ is more obvious than that of O₂ and N₂ under the same circumstance. The concentration of the impurities should be controlled in a rational range for the perspective of the economy and efficiency.

Nomenclature

\[p \quad \text{pressure(MPa)} \]
\[T \quad \text{temperature(°C)} \]
\[R \quad \text{general gas constant}(8.3147 \text{MPa} \text{·cm}^3/(\text{mol} \cdot \text{K})) \]
\[a_m \quad \text{gravitational constant of the mixed systems} \]
\[b_m \quad \text{repulsive constants of the mixed system} \]
\[v \quad \text{molar volume(cm}^3/\text{mol)} \]
\[n \quad \text{mole of the system} \]
\[x_i \quad \text{mole fraction of i component in the liquid} \]
\[a_i, b_i \quad \text{parameters of EOS of i component} \]
\[\alpha_i \quad \text{a function about temperature} \]
\[G_{E} \quad \text{excess Gibbs Free Energy under Infinite Pressure(J/mol)} \]
constant \(= \frac{1}{2\sqrt{2_m}} \ln \frac{2 + \sqrt{2}}{2 - \sqrt{2}} \)

- \(T_{ci} \) critical temperature of the i component (°C)
- \(p_{ci} \) critical pressure of the i component (MPa)
- \(T_{ri} \) reduced temperature of the i component (°C)
- \(p_{ri} \) reduced pressure of the i component (MPa)
- \(m \) a function about acentric factor

\(C_{ji} = g_{ji} - g_{ii} \)

- \(g_{ji}, g_{ii} \) Boltzmann factor between molecules
- \(k_{ij} \) interaction coefficient between i component and j component
- \(G_{ji}, G_{ki} \) temperature-dependent parameters that can be adjusted
- \(\alpha_{ji}, \alpha_{ki} \) non-random parameters between i, j components and between i, k components

\(\varphi_i \) fugacity coefficient of i component
\(Z \) deviation factor
\(n_i, n_j \) mole fraction of i, j component
\(\varphi_m \) fugacity coefficient of the mixture
\(Z_m \) deviation factor of the mixture
\(\gamma_i \) activity coefficient of i component

Acknowledgement
This work is supported by Science Foundation of China University of Petroleum, National Basic Research 973 Program of China (2015CB250900), and National Natural Science Foundation of China (U1262101).

Reference