BREATHING LOSSES FROM LOW-PRESSURE STORAGE TANKS DUE TO ATMOSPHERIC WEATHER CHANGE

Dr. Davide Moncalvo, Dr. Michael Davies, PROTEGO, Germany
Agenda

1. Introduction
2. State of the art
3. Description of available models and experiments
4. Conclusions
5. Future work
Introduction

- Low-pressure tanks are large open-air storage tanks, containing huge amounts of product within thin walls

- Protection against corrosion and thermal losses caused by weather changes incl. storms is often done by organic coating

- A more economical corrosion protection may be painting the tank. However, a painted tank lacks of the thermal protection against weather temperature changes or seasonal rainfalls or droughts

- For a tank protected against vacuum and overpressure ambient heat inflow leads to breathing out of valuable product, whereas sudden cooling leads to vacuum, compensated by in-breathing of ambient air.
State of the art

- Literature sources on this topic

 - „Naumann formulas“ (unpublished)
State of the art / Models and experiments

<table>
<thead>
<tr>
<th>Model</th>
<th>Model</th>
<th>Experiments</th>
<th>Applicability (Case study)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naumann (unpublished)</td>
<td>Empirical</td>
<td></td>
<td>Thermal tank heating</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Thermal tank cooling</td>
</tr>
<tr>
<td>Höchst / Sigel et al. (1983)</td>
<td>Analytical</td>
<td>Rain cooling on Air tank (600 m³)</td>
<td>Short rainfalls</td>
</tr>
<tr>
<td>PTB / Förster et al. (1984)</td>
<td>Analytical</td>
<td></td>
<td>Long sun exposure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Short and long rainfalls</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Condensing tank products</td>
</tr>
<tr>
<td>Salatino (1999)</td>
<td>Analytical</td>
<td></td>
<td>Sudden rain falls</td>
</tr>
</tbody>
</table>

Note: The methods (measurements) presented here have been derived (performed) for **cylindrical tanks**
Naumann formulas

Naumann formulas are **conservative** empirical estimations of the tank maximum in- and outbreathing to compensate for tank thermal heating and cooling.

\[
\dot{V}_{\text{max-out}} = 1.1 \frac{m}{h} \cdot H \cdot D \approx 1.292 \frac{m}{h} \cdot \left(\frac{H}{D} \right)^{1/3} \cdot (V_{\text{tank}})^{2/3}
\]

\[
\dot{V}_{\text{max-in}} = 1.5 \frac{m}{h} \cdot (H + 4D) \cdot D \approx 1.762 \frac{m}{h} \cdot \left[4 \left(\frac{H}{D} \right)^{-2/3} + \left(\frac{H}{D} \right)^{1/3} \right] (V_{\text{tank}})^{2/3}
\]
PTB tank heating model

Tank volume increment following a long sun exposure

\[
\dot{V}_B(t) = \frac{V_{tank}}{T_{B0}} \frac{c}{\lambda} \left[\exp \left(\frac{\lambda - a}{2} t \right) - \exp \left(- \frac{\lambda + a}{2} t \right) \right]
\]

\[
\lambda = \sqrt{a^2 - 4b}
\]

\[
a_{PTB} = A_{tank} \left(\frac{\alpha_B}{C_B} + \frac{\alpha_B + \alpha_{conv} + 0.75 \varepsilon_{emis} \alpha_{emis}}{C_E} \right)
\]

\[
b_{PTB} = A_{tank}^2 \frac{\alpha_B}{C_B} \cdot \frac{\alpha_{conv} + 0.75 \varepsilon_{emis} \alpha_{emis}}{C_E}
\]

\[
c_{PTB} = A_{tank}^2 \frac{\alpha_B}{C_B} \cdot \frac{l \cdot \varepsilon_{rad} \Phi_{GEOM} - 0.5 \cdot E_{BLACK} \varepsilon_{emis}}{C_E}
\]

This formula foresees a maximum tank shrinking \(V_{max} \) at some time

\[
\dot{V}_{max} = \dot{V}_B(\tau) \quad \text{with} \quad \tau = \frac{1}{\lambda} \ln \left(\frac{a + \lambda}{a - \lambda} \right) \neq 0
\]
Höchst and PTB tank cooling model

Tank volume reduction following rainfall cooling

\[
\dot{V}_B(t) = V_B \cdot \frac{T_B - T_{\text{rain}}}{T_B} \cdot \frac{b}{\lambda} \left[\exp \left(\frac{\lambda - a}{2} t \right) - \exp \left(-\frac{\lambda + a}{2} t \right) \right]
\]

\[
\lambda = \sqrt{a^2 - 4b}
\]

\[
a = A_{\text{tank}} \cdot \left(\frac{\alpha_B}{C_B} + \frac{\alpha_B + \alpha_w}{C_E} \right)
\]

\[
b = A_{\text{tank}}^2 \cdot \frac{\alpha_B}{C_B} \cdot \frac{\alpha_w}{C_E}
\]

Unlimited rain (flood, deluge)
Thin rain film thickness (rain)

This formula foresees a maximum tank shrinking \(\dot{V}_{\text{max}}\) at some time

\[
\dot{V}_{\text{max}} = \dot{V}_B(\tau) \quad \text{with} \quad \tau = \frac{1}{\lambda} \ln \left(\frac{a + \lambda}{a - \lambda} \right) \neq 0
\]

\[
k = \frac{\alpha_w}{\alpha_w + \dot{m}_{\text{rain}} c_{\text{rain}}}
\]
Salatino model

- It considers the different heat transfer intensity between gas and tank shall and the roof in a partially filled wetted tank. Liquid temperature is assumed unchanged.

- His method consists in a thermodynamic analysis of the tank before and after a weather change, f.i. rainfall cooling in a long hot dry summer.

- Final gas temperature in function of the final temperature of each surface facing it:

\[
T_{end,G} = \sum \frac{A_i \cdot \alpha_{iG} \cdot T_i}{A_i \cdot \alpha_{iG}} = \frac{A_r \cdot \alpha_{rG} \cdot T_r + A_s \cdot \alpha_{sG} \cdot T_s + A_L \cdot \alpha_{LG} \cdot T_L}{A_r \cdot \alpha_{rG} + A_s \cdot \alpha_{sG} + A_L \cdot \alpha_{LG}}
\]

- He proposed a rigorous numerical method and a simplified model to predict the maximum inbreathing load due to rainfall cooling of a warm tank (Difference 2%):

\[
\dot{V}_{tank} = \frac{R}{p} \cdot (T_{hot,G} - T_{cold,G}) \cdot \frac{A_r \cdot \alpha_{rG} + A_s \cdot \alpha_{sG} + A_L \cdot \alpha_{LG}}{c_p}
\]
ISO 28300 and API 2000 (2009)

- The thermal outbreathing capacity is given by
 \[\dot{V}_{out} = Y \cdot (V_{tank})^{0.9} \cdot R_i \]

- The thermal inbreathing capacity is given by
 \[\dot{V}_{in} = C \cdot (V_{tank})^{0.7} \cdot R_i \]

Y Factor

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Y Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 42°</td>
<td>0.32</td>
</tr>
<tr>
<td>Between 42° and 58°</td>
<td>0.25</td>
</tr>
<tr>
<td>Above 58°</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Vapor Pressure

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Storage temperature</th>
<th>C Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vapor pressure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hexane or similar</td>
<td>C Factor</td>
</tr>
<tr>
<td></td>
<td>Higher than hexane, unknown</td>
<td>C Factor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Below 25°C</th>
<th>Above 25°C</th>
<th>Below 25°C</th>
<th>Above 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below 42°</td>
<td>4</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>42° - 58°</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Above 58°</td>
<td>2.5</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

© Braunschweiger Flammenfilter GmbH
PROTEGO® Initial test / Test condition and sensors

Tank data
- Tank diameter: 1.15 m
- Tank length: 4.3 m
- Tank volume: 4.466 m³
- Wall thickness: 10 mm
- Medium in the tank: Air

Test environment
- Wall temperature: 55°C

Sensors and measuring equipment
- Anemometer Testo 452 (max. 20 m/s; accuracy ± 0.5 m/s)
- Test probe diameter 12 mm
- Inner Temperature Thermometer Pt100
- Outer Temperature Thermocouple

Water poured using two hoses with combined mass flux of 230 kg/m²h
PROTEGO® Initial test / Temperature profiles and inbreathing velocity

- Ambient air temperature: 12°C
- Barometric pressure: 1.006 bar

Max. air velocity: 17.3 m/s

Inner temperature
Air velocity
Outer temperature

© Braunschweiger Flammenfilter GmbH
Conclusions about the available data

- Besides ISO 28300 (API 2000), PTB and Höchst models enjoy wide acceptance

- Models have been validated for either gassy or laboratory size tanks

- The tanks are considered as uninsulated and the impact of wall thickness is unaccounted

- Some models predict the maximum inbreathing load occurring as soon as rain falls, while others assume it occurring later on

- Models often rely heavily on simplified assumptions for heat transfer coefficients, see f. i. constant temperature – independent convection coefficients

- Furthermore, most models use convection heat transfer coefficients derived for small diameter piping systems to tanks.

- Inner tank vapor condensation mechanism is usually neglected (Nucleation)
Future work / Targets for future research

- Measurements will be started with small tanks: test tank (4.3 m²) to API 12F (62 m²)
- Measurements with hot air, ethanol, methanol
- Filling levels: 10%, 50%, 75%, 90%
- Natural precipitation or water pouring with hoses
- Modeling product condensation (nucleation models), tank wall thickness and insulation

These are our ideas!
We are open for suggestions, critics and inputs
Work in Progress / Roadmap

- 10th European Congress Chemical Engineering, www.ecce.eu
 27. Sept. – 01. Oct. 2015, Nice, France, accepted paper

- DIERS Fall 2015 Meeting,
 05. – 07. Oct. 2015, Houston, TX, USA

 05. – 08. June 2016, Freiburg, Germany, accepted paper

- DIERS Spring 2016, tbd
Thank you very much for your kind attention!

Reproduction, in part or in full, subject to prior written approval of Braunschweiger Flammenfilter GmbH. © 2015 All rights included.