Process Intensification: Application in Pharmaceutical Manufacturing

Marianthi Ierapetritou

Department of Chemical and Biochemical Engineering
Current state of Pharmaceutical Industry

• **Process development challenges**
 – Time pressure for clinical supply delivery
 – Uncertainty throughout development process
 – Unique physical properties of APIs
 – Sequential scale-up of batch processes

• **Economic challenges**
 – Up to 27% of revenues spent on manufacturing costs
 – Increased global competition, generics manufacturers

• **Regulatory concerns**
 – Quality by Design (QbD) – companies need increased process understanding
 – Inherent variability in performance and sampling

Need efficient and robust manufacturing strategies in order to remain competitive

Buchholz, S. Chem Eng Process 2010, 49 (10), 993-995
Shah, N. Comput Chem Eng 2004, 28 (6-7), 929-941
Pharmaceutical industry is innovative in development of new drugs **BUT manufacturing is primitive** compared to other chemical industries.

Given a **new** formulation/product:

- Production predominantly in **BATCH** mode
- A batch is produced → samples are tested → batch **FAILS/PASSES**

Sample only a few

Is quality for rest of the tablets the patient will take **captured**?
Batch vs. Continuous Processes

- **Intermediate steps** in batch, not continuous

Batch Process

- POWDER → INTERMEDIATES → TABLETS
- Lots of down
- Time

Continuous Process

- POWDER → TABLETS
- No intermediate blends or steps

Continuous Process

- Washing and Prep
- Comill
- V – Blender
- Intermediate Blend
- Loss-in-Weight Feeders
- Materials fed constantly
- Mixer
- Feed Frame & Tablet Press
Continuous manufacturing has no lag times in production, while batch has delays due to washing, blending and comilling between batches (no product being made)

Increased productivity (No. tablets in X time)

- **Set Up**
- **Start Operation**
- **Filling Feed Frame**
- **Washing, down time blending, comilling**
- **Tablet Press**

Remember: Product is only manufactured when its at the tablet press
Batch vs. Continuous Processes

- **Batch**
 - **Cons**
 - Productivity is low
 - Down time
 - Set process design and operation
 - Powder exposure during process
 - Scale-up necessary
 - Time and new equipment
 - Harder to control
 - Wasted batches
 - Within-batch variability
 - Multiple operators required
 - **Pros**
 - Many products are produced in smaller quantities
 - Existing ‘know-how’ and fillings

- **Continuous**
 - **Cons**
 - Novel method
 - Few regulatory fillings
 - Requires engineering understanding
 - **Pros**
 - High Productivity
 - No down time in process
 - Set design, but varying parameters
 - Flexible operation
 - Enclosed powders = no exposure
 - Less scale-up studies
 - Extended operation = scale up
 - Better control
 - No failed batches
 - Automated process = less operators
 - Smaller footprint and equipment
Advantages of Continuous Processes

Some of the major advantages of continuous systems include:

– **Increased productivity**
 • Eliminate down time during operation

– **Fewer scale-up studies**
 • Parallelization, increased throughput
 • Reduced time to market

– **Small and compact equipment**
 • Reduced capital cost and utilities requirement
 • Small area footprint

– **Ability to implement control strategies**
 • Real-time feedback control, Model Predictive Control (MPC)
 • Enhanced process robustness

– **Advanced computational tools – process systems engineering**

Process Systems Engineering

- **Process modeling capabilities**
 - Supplement experimental work during process development\(^1\)
 - Design and test control strategies
 - Flowsheet models\(^2\), Discrete element method\(^3\)

- **Process analysis**
 - Sensitivity analysis\(^4\) – identify critical process parameters, control variables
 - Flexibility and feasibility analysis\(^5\) – design space and process robustness

- **Process optimization\(^6\)**
 - Determine optimal process design and operating conditions subject to product quality and process operating constraints

Challenges for a flowsheet model for solids

Critical material properties
- Lack of universal set throughout processes and industries
- Inherent variability in powder material properties & distributed parameters
- Lack of technology for monitoring desired material properties online

Critical process operating variables
- Lack of correlation between operating variables and material properties
- No control strategies

Modeling work
- Majority: Discrete Element Method (DEM) simulations → computationally expensive
- In recent literature: plethora of experimental studies & empirical correlations of certain inputs/outputs & specific materials
- Dynamic reduced order models are needed:
 - First-principle based
 - Population balance models
 - Data based models

Werther, J., et al. Computers & Chemical Engineering 23(11-12) 1773-1782
Boukouvala, F. et al. Computers & Chemical Engineering. 42(11) 30-47
Ideal Development of a Pharmaceutical Process

Given a Formulation

Characterize Powders using Universal Tests

Evaluate Unit Operation Models using Powder Properties

Create the Design Space for Individual Unit Ops

Design the Process

Build a Flowsheet Model

Develop the Design Space of the Overall Process and **Optimize**

Determine Operating Parameters and Control Strategies

Validate using Experimental Data

Asses Process Sensitivities and Risks
Integrated Process Models

API Feeder → Excipient Feeder → Blender → Granulator → Dryer → Tablet Press → Coater → Dissolution

Optional feeders for more ingredients (i.e. lubricant)

Optional Recirculation tank

Wet Granulation

Continuous flexible multipurpose platform
- Process simulation
- Sensitivity analysis
- Design space evaluation
- Optimization

NSF Engineering Research Center for Structured Organic Particulate Systems (C-SOPS)
Unit Operation Models: Direct Compaction

FEEDERS:
- **Model:** Delay Differential Equation

 \[\text{rpm} \quad d_{50} \rho F_{\text{set}} \quad d_{50} \rho F_{\text{out}} \]

MIXER:
- **Model:** Population Balance model

 \[\text{rpm} \quad d_{50} \rho F_{\text{in}, C_{i}} \quad d_{50} \rho F_{\text{out}, C_{i}, \text{RSD}} \]

HOPPER:
- **Model:** Mass flow buffer tank model

 \[H, D_{\text{outlet}} \quad d_{50} \rho F_{\text{in}, C_{i}, \text{RSD}} \quad d_{50} \rho F_{\text{out}, C_{i}, \text{RSD}} \]

TABLET PRESS:
- **Model:** Heckel equation & feed frame residence time model

 \[P, \text{rpm} \quad \epsilon, \sigma, C_{i}, F_{\text{out}} \quad d_{50} \rho F_{\text{in}, C_{i}, \text{RSD}} \]

DISSOLUTION:
- **Model:** Fick’s second Law

 \[h, r \quad \epsilon, \sigma, C_{i}, F_{\text{out}} \quad t_{\text{diss}} \]

- Individual unit operation models consist of a series of equations meant to describe process physics and dynamics
- Unit operation equations can be combined sequentially to represent entire manufacturing processes
Latent Variable ROM based on DEM

- In CFD simulation: Discretize into finite elements → solve set of equations for specific element → calculate continuous variable values (T,P).
- In a DEM simulation → discrete elements (particles) → How do we extract information???
 - Discretize geometry and extract **average** information about number of particles inside each compartment. Consider “unreliable means” as **missing**

BUT how to discretize?
- ✓ Dense enough to capture spatial variation
- ✓ Coarse enough to have large number of particles inside each element

- Few number of particles: Consider as missing data (impute)
- Very few or no particles: Set equal to zero
- Large enough number of particles: Use average value
Discrete Element Reduced-Order Modeling Methodology

1. DOE – parameter variation
2. Discretize process geometry
3. Extract state data (Z)
4. Obtain response data (Y)
5. Pre-process state and response data

Input Space

$X \in \mathbb{R}^{N \times m}$

State Space

$Z \in \mathbb{R}^{N \times p}$

Output Space

$Y \in \mathbb{R}^{N \times m}$

6. Reduce dimensionality of state data (PCA)

7. Develop a mapping between input space (X) and reduced state space ($PCA scores$)

$X \rightarrow T$

8. Develop a mapping between input parameters (X) and output space (Y)
Steady State Case Study

Average u_z of particles (m/s)

<table>
<thead>
<tr>
<th>DE-ROM</th>
<th>DEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSE</th>
<th>28%</th>
<th>19%</th>
<th>21%</th>
</tr>
</thead>
</table>

Prediction error for RSD (1 case): 1%

NSF Engineering Research Center for Structured Organic Particulate Systems (C-SOPS)
Dynamic Case Study

Velocity predicted by ROM

Velocity obtained from DEM

Predicted u_x vs. u_x obtained from DEM 23 seconds after change from 160 to 250 rpms

- Velocity and RSD predictions have good accuracy
- Velocity prediction can be used directly in PBM model
- Prediction of RSD can be used for surrogate-based modeling or sensitivity analysis applications

<table>
<thead>
<tr>
<th></th>
<th>U_x</th>
<th>U_y</th>
<th>U_z</th>
<th>RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>% MSE</td>
<td>0.55%</td>
<td>0.96%</td>
<td>1.13%</td>
<td>1.07%</td>
</tr>
</tbody>
</table>
DESIGN SPACE

How much **uncertainty** can a process tolerate?
"Flexibility of a process is defined as its capability to maintain feasible operation for a range of uncertain conditions that may be encountered during operation" \(^1,^2\)

Vast literature on formulation of optimization problems which to find max acceptable deviations under uncertainty

\[
\begin{align*}
\max / \min \ & P(d, z, x, \theta) \\
\text{s.t.} \ & h(d, z, x, \theta) = 0 \\
\ & g(d, z, x, \theta) \leq 0
\end{align*}
\]

\(^3\) Lepore, J., & Spavins, J. Journal of Pharmaceutical Innovation, 2008

\(^4\) Boukouvala et. al, Journal of Pharmaceutical Innovation, 2010

1 Halemane et al. (1983), AIChE Journal.
2 Floudas et al. (2001), IECR
Black-box Process Feasibility

Goal is to locate boundaries of feasible operation:
- When multiple constraints are present
- Closed form expression for constraints may not be available
- When discrete designs are possible

Feasibility function – process is feasible when $u \leq 0$

$$\psi(d, \theta) = \min_{u,z} u$$

$$s.t. g_j(d, z, \theta) \leq u, \quad j \in J$$

Initial Samples (DOE) → **Determine Expected Improvement $E[I(x)]$** → **$E[I(x)] < tol?$** → **Yes** → **Feasible region boundaries identified** → **No** → **Additional samples**

$$E[I(x)]_{feas} = s \Phi \left(\frac{0 - y_{pred}}{s} \right)$$

Probability of $u = 0$: boundary

Model uncertainty

Initial sampling → Refined sampling → Predicted feasible region

1. Jones et al. 1998
2. Boukouvala et al., Computers and Chemical Engineering, (36), 2012

NSF Engineering Research Center for Structured Organic Particulate Systems (C-SOPS)
Design Space of Continuous blender

We define feasibility:

- Since we want to minimize the output RSD, we set a maximum threshold value that can be tolerated (RSD_{max}).
 - If the predicted output is lower, it's feasible.
 - If the predicted output is higher, it's infeasible.

Where:

- i: design
- m: total number of designs
- n: number of input variables
- β_j: RSM coefficients
- z_j: input variables
- x_i: response surface produced for each design

Introduce binary variables for each design (m) and form a MINLP problem:

$$\begin{align*}
\text{min/max} & \quad \sum_{i=1}^{m} y_i x_i \\
\text{s.t.} & \quad \sum_{i=1}^{m} y_i = 1 \\
& \quad y_i \in \{0,1\}^m \\
& \quad z_j^{(i)\text{lo}} \leq z_j^{(i)} \leq z_j^{(i)\text{up}} \quad i = 1...m, \; j = 1...k
\end{align*}$$

Where:

- i: design
- m: total number of designs
- n: number of input variables
- β_j: RSM coefficients
- z_j: input variables
- x_i: response surface produced for each design

Constraint to make sure only one design is chosen:

$$x_i = \beta_0 + \sum_{j}^{n} \beta_j z_j + \sum_{j<k}^{n} \beta_{jk} z_j z_k + \sum_{j}^{n} \beta_{jj} z_j^2$$

NSF Engineering Research Center for Structured Organic Particulate Systems (C-SOPS)
Inverse problem:
Based on desired properties, what should the design of the flowsheet be?
Surrogate Based Optimization: Proposed Methodology

- Combination of global search (initially) with local search (final stage)
- Incorporation of a black-box feasibility stage to identify form of feasible region
- Final local trust-region approach by allowing multiple starting points if clusters of promising feasible points is identified
- Alleviation of noise effects through a stochastic kriging model
 - heteroscedastic variance case

Initially sample entire region

Refine in boundary regions to map feasible region

\[
E[I(x)]_{feas} = s \phi \left(\frac{0 - y_{pred}}{s} \right)
\]

Process Optimization

- **OBJECTIVE:** minimize cost of a 1 day operation of continuous direct compaction
- **DECISION VARIABLES:** process capacities, operating conditions, throughput, refill strategy
- **SUBJECT TO:** Process capacity bound constraints, Product quality constraints, Minimum production requirement
- Leads to an optimization of an expensive-to-evaluate model, with complex constraints and uncertainty: **SURROGATE SIMULATION-BASED OPTIMIZATION**

Step 1: Formulate objective and constraints

\[

c_{	ext{equipment}} + c_{\text{operation}} + c_{\text{mixture}}
\]

\[
F_{\text{total}} \leq F_{\text{total}} \leq F_{\text{total}}^{\text{up}}
\]

\[
\text{rpm}_{\text{mixture}} \leq \text{rpm}_{\text{mixture}} \leq \text{rpm}_{\text{mixture}}^{\text{up}}
\]

\[
0.99 \times 0.0092 \leq C_{\text{MgSt}} \leq 1.01 \times 0.0092
\]

\[
0.1 \leq RL \leq 0.6
\]

\[
t_{\text{hopper}} \leq t_{\text{hopper}} \leq t^{\text{up}}_{\text{hopper}}
\]

\[
t_{\text{mixture}} \leq t_{\text{mixture}} \leq t^{\text{up}}_{\text{mixture}}
\]

\[
P_{\text{total}} \leq P_{\text{total}} \leq P^{\text{up}}_{\text{total}}
\]

\[
\text{hardness} \leq \text{hardness} \leq \text{hardness}^{\text{up}}
\]

\[
e^{\text{lo}} \leq e \leq e^{\text{up}}
\]

\[
t_{\text{diss}} \leq t_{\text{diss}} \leq t^{\text{up}}_{\text{diss}}
\]

\[
\text{Tablet prod min} \geq \text{Tablet prod up}
\]

Step 2: Flowsheet simulations for different conditions based on DOE

Step 3: Build surrogate model and optimize. Approximate uncertainty

Optimal cost: $153,892

<table>
<thead>
<tr>
<th>Variable</th>
<th>Optimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{total} (kg/h)</td>
<td>54</td>
</tr>
<tr>
<td>Mixer rpm</td>
<td>102</td>
</tr>
<tr>
<td>C_{MgSt} (w/w)</td>
<td>0.0092</td>
</tr>
<tr>
<td>RL(%)</td>
<td>54</td>
</tr>
<tr>
<td>V_{hopper} (m³)</td>
<td>0.03</td>
</tr>
<tr>
<td>P_{comp} (Pa)</td>
<td>1042</td>
</tr>
</tbody>
</table>

Adaptive sampling

Output Space

Response surface

Uncertainty surface

Step 1: Formulate objective and constraints

Step 2: Flowsheet simulations for different conditions based on DOE

Step 3: Build surrogate model and optimize. Approximate uncertainty

NSF Engineering Research Center for Structured Organic Particulates
Conclusions and future goals

• As the industry is moving to advanced manufacturing solutions, process intensification will be in the center of attention.

• There is a need for predictive models for optimization of process design and operations

• Reduced order modeling techniques are needed, due to the complexity of models necessary for complex pharmaceutical processes

• Technologies are transferrable to other powder processing industries such as food, consumer goods.

• As flowsheet models are being used, flowsheet synthesis framework will be developed to design process for any new formulation
Motivation: Exhausting petroleum resources have prompted the development of sustainable biorefinery to produce biofuel and bio-chemicals from biomass feedstocks.

Objectives:
- Perform techno-economic analysis on the productions of biobased chemicals and estimate the minimum cost of the products
- Apply life cycle assessment to evaluate the environmental impacts
- Implement process synthesis and optimization to achieve an optimal process diagram

Accomplishments:

Techno-Economic Analysis
- Experimental Data
- Process Design
- Discounted Cash Flow

Life Cycle Assessment
- Aspen plus simulation
- Inventory
- LCA software
- Energy flow
- HEN
- Aspen Energy Analyzer

Process Synthesis and Optimization
- Biomass feedstock
- Catalytic conversion
- Bioprocess
- Separation units
- Bioproducts
- Black-Box optimization and synthesis
Acknowledgements:

Funding provided by the ERC (NSF-0504497, NSF-ECC 0540855)