

Development of a Bioenergy Sustainability Tradeoffs Assessment Resource (BioSTAR)

Esther S. Parish (parishes@ornl.gov), Keith Kline, Michael Hilliard, Rebecca Efroymson

October 21, 2019 AIChE Bioenergy Sustainability Conference 2019 Nashville, Tennessee

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Current BioSTAR Tool Developers

- Esther Parish, Mike Hilliard, Keith Kline, Rebecca Efroymson (ORNL)
- Janet Hopson, Robert Gibson, WT Wilson (University of Tennessee)

Initial BioSTAR concept included:

- Virginia Dale (now at the University of Tennessee)
- Nathan Pollesch (now at EPA)

- University of Tennessee Institute of Agriculture (UTIA), Genera Energy
- USFS Southern Research Station, IEA Bioenergy
- Antares Group Inc, Penn State, INL, ANL

ORNL's Sustainability Research for DOE BETO

GOAL: Improve understanding of potential trade-offs among environmental and socioeconomic indicators to help government & industry maximize potential benefits for local communities.

Our research agenda includes

- Defining environmental & socioeconomic benefits and costs of bioenergy systems
- Quantifying opportunities & tradeoffs associated with bioenergy systems in specific geographic contexts
- Engaging with a range of stakeholders to better understand the challenges & paths forward for sustainable bioenergy production
- Communicating case study results & generalizing lessons learned for improved practices

Key challenges

- New methods are needed to accurately represent complex tradeoffs
- Indicator data are collected at many different spatial & temporal scales

Motivations for developing the web-based Bioenergy Sustainability Tradeoffs Assessment Resource (BioSTAR) tool

- 1. Promote consistent evaluation of bioenergy sustainability
- 2. Involve stakeholders in setting sustainability goals & tracking progress toward those goals

- 3. Make indicator datasets transparent & accessible
- 4. Facilitate continual improvements in environmental & socioeconomic aspects of cellulosic feedstock production
- 5. Share lessons learned for better practices

ORNL's Sustainability Assessment Approach

Ecology 34 6):1199-1248 Project 4.2.2.40

Sustainability Research to be shared via BioSTAR

1. Define scope

BioSTAR

Bioenergy Sustainability Tradeoffs Assessment Resource

NOTICE: This BioSTAR prototype is currently under development. It uses sample data, and c

What would you like to do?

Describe purpose

- Document context
- Identify options to be compared

Explore an Existing Project

Add a Project

BioSTAR is designed to evaluate sustainability of cellulosic biomass production (i.e., field up to biorefinery gate)

Photo by P. McDaniels, University of Tennessee Institute of Agriculture.

U.S. Department of Energy

Contact Us

Security & Privacy

Prioritize and select indicators for analysis by dragging the indicator category groups shown below into one of the three bins above. Any indicators not placed in a bin will remain unselected. Click the (+) button on an indicator category to view the individual indicators it contains. If you would like to remove an individual indicator from analysis, uncheck it.

If you would like to include an indicator not listed below, click the Create Indicator button.

View our Sustainability Indicator Checklist for descriptions of indicators.

11

National Laboratory

Select Indicators - Southeastern Wood Pellet Case Study - Chesapeake 2. Prioritize indicators **High Priority** Medium Priority Low Priority Select based on criteria: Water Quality Carbon Cycle Stakeholder priorities Nitrate Discharge CO2 Produced Ability to inform decisions & reflect costs & benefits GHG Intensity Total Nitrogen Reliable, doable, timely Total Phosphorus Carbon in Soil and Leaf Litter Sediment Carbon in Harvestable Biomass Carbon in Non-harvestable Reset Biomass Profitability + Create Indicator Total Timberland Carbon Continue

Prioritize and select indicators for analysis by dragging the indicator category groups shown below into one of the three bins above. Any indicators not placed in a bin will remain unselected. Click the (+) button on an indicator category to view the individual indicators it contains. If you would like to remove an individual indicator from analysis, uncheck it.

If you would like to include an indicator not listed below, click the Create Indicator button.

View our Sustainability Indicator Checklist for descriptions of indicators.

 3. Establish targets 3. Establish targets 4. Define reference case & future scenarios 6. Time frame 6. Spatial extent 6. Management practices 7. Set indicator target values needed to meet objectives 							
Indicators	Spatial	Indicator	Starting	Targe	t Velue(e)		
Environmental	Extent	Units	value	Condition	value(s)		
Water Quality							
Nitrate discharge	Watershed •	kg v	8,335,093 kg	Target condition •	50000 kg		
Total nitrogen	Watershed •	kg 🔻	9,659,075 kg	Less than or equal to	8000 kg		
Total phosphorus discharge	Watershed •	kg v	400,642 kg	Decreases v			
Sediment	Watershed •	kg 🔻	626,902,084 kg	Decreases •			
Socioeconomic							
Profitability							
Export value	Fuelshed •	\$ •	114,000,000,000 \$	Increases			
Economic impact	State •	\$	181,000,000,000 \$	Target condition •	200,0000,0000 \$		

Glossary of Terms

Explore what is sustainability of Explanation	already know f selected fee ≈ Mixed	Iready known about selected feedstock ≈ Mixed results expected			 3. Establish targets Define reference case & future scenarios Time frame Spatial extent Management practices Set indicator target values 			
	Switcharass	Miscanthus			Biomass sorthum			
	Water Quality	miscantitus	x com stor					
Environmental								
<u>Air Quality</u>	Total Nitrogen	Total Nitrogen						
Biodiversity	Nitrate	Nitrate						
Greenhouse Gases	Total phosphorus			1				
Productivity	Suspended sediment	Suspended sediment			1			
Soil Quality	Herbicide	Herbicide			~			
Water Quality		1	•					
Water Quantity					₽.			
Socio-economic								
Energy Security	1	~	1		~			
External Trade	~	~ ~			+			

Explore studies & assumptions underlying sustainability trend arrows

Indicator: Water Quality - Total Phosphorus Feedstock: Switchgrass

3. Establish targets

 Define reference case & future scenarios

- Time frame
- Spatial extent
- Management practices
- Set indicator target values
- needed to meet objectives

3. Establish targets Provide Relevant National-Scale Datasets: Define reference case & Example: Results from Billion Ton 2016 Report, Vol II future scenarios Time frame Spatial extent Indicator Management practices **Biomass Category** Model Set indicator target values Category needed to meet objectives Surrogate CENTURY Soil Organic Carbon Soil quality Agricultural model Greenhouse gases, Regulated Emissions, and GHGs Agricultural & Forestry Energy use in Transportation Model (GREET) Soil and Water Assessment Tool (SWAT) Agricultural Water quality Forestry Empirical model Water Supply Stress Index (WaSSI) Ecosystem Forestry Services Model Water quantity Water Analysis Tool for Energy Resources Agricultural & Forestry (WATER) Feedstock Production Emissions to Air Model Air emissions **Agricultural & Forestry** (FPEAM) Agricultural Species distribution model, Bio-EST **Biodiversity** Forestry Habitat suitability framework

Visualize environmental & socioeconomic indicator data collected across many spatial & temporal scales

)ak Ridge

National Laboratory

17

4. Determine indicator values

- Collect and validate:
 - -Empirical measures
- -Surveys & expert opinion
- -Simulations & projections

BETO A&S Project 4.2.2.40

Visualize progress toward indicator targets

4. Determine indicator values

Collect and validate:

- -Empirical measures
- -Surveys & expert opinion
- -Simulations & projections

Prototype of an interactive visualization of progress of an indicator of forest carbon toward a target under two different scenarios (Reference vs. Pellet).

100

80

60

Less is better Indicator2 (2060)

40

20

2040

YR

2050

Compare indicator	ORNL Pe	ORNL Pellet Study		SRTS Projections (Abt, 2019)			
selected scenarios	Past 🗅 Prior to 2011	Present 🗅 2011-2016	Future 1 2014-2060 Current production	Future 2 2014-2060 Production doubled	Future 3 🗅 2014-2040		
Environmental			5	Analyza	trands 8		
<u> Carbon Cycle</u>			5.	Analyze	offe		
CO ₂ Produced	-	-	-	tradeons			
GHG Intensity	-	-		 Compare & rank scenario Select preferred option Document & share result 			
Carbon in Soil and Leaf Litter	1	1	• Se				
Carbon in Harvestable Biomass	1	1	- Do				
Carbon in Non-harvestable Biomass	1	1					
Total Timberland Carbon	1	1	1	1	-		
Water Quality							
Mater Quantity							
Rain Water Usage							
Socio-economic		oor Chango	Womaning	Data patr	availabla		
Profitability		ear change	worsening	- Data Hot a	avaliable		
Export Value Indicator Priorities							
Economic Impact High Priority	Medium Priority Low Priority						
To explore data for ir	ndividual indicators, cl	ick on the trend ic	ons in the table below	v			

CAK RIDGE

May 2019 Usability Study Example:

"Sunburst" visualization option

5. Analyze trends & tradeoffs

- Compare & rank scenarios
- Select preferred option
- Document & share results

Scenario B Expected Results

Scenario A Expected Results

BETO A&S Project 4.2.2.40

CAK RIDGE

National Laboratory

DEXi software can be used to aggregate qualitative indicator ratings & compare scenarios

Parish ES et al. (2016) Ecosphere 7(2):e01206.

5. Analyze trends &

tradeoffs

ast TN Switchgrass Case Study Results				5. Analyze trends & tradeoffs					
Explanation ★★★ Expected to improve	★★ Mixed results expected	★ Expected to wor	• Compare & rank scenari • worse • Select preferred option • Document & share resu			arios on esults			
	Sus								
Indicators	Switchgrass	Unmanaged Pasture	Corn	Charts	Maps	Notes			
Environmental									
Air Quality	***	***	**			D			
√ <u>Biodiversity</u>	***	**	*			D			
Kara Greenhouse Gases	**	***	*			D			
<u>Productivity</u>	***	*	**			D			
Soil Quality	***	***	*			D			
Water Quality	***	***	*		~	D			
Total Nitrogen									
Nitrate	***	**	*						
Total phosphorus	***	**	*						
Suspended sediment	***	**	*						
Herbicide	**	***	*						
Nater Quantity	***	**	**			D			

CAK RIDGE

Can incorporate mathematical methods developed to aggregate quantitative indicator results

- Normalization transforms measurements from original units to common measurement units
- Advantages of target normalization
 - Allows for inclusion of context specific baselines & target values
 - Consistent functional forms across different bearing types for baseline (B) & target (T)
 - More is better (e.g., biodiversity)
 - Less is better (e.g., nitrates in streams)
 - Medium is better (e.g., soil compaction)
 relative to lower & upper bounds (B_L & B_U)

Aggregation

- Applies mathematical properties of aggregation functions
- Inconsistencies arise if properties of aggregation functions aren't considered

B

Pollesch & Dale (2015 & 2016) Ecol. Econ. Pollesch (2016) PhD dissertation in Mathematics

5. Analyze trends & tradeoffs

- Compare & rank scenarios
- Select preferred option
- Document & share results

5. Analyze trends & **Collaborating with Iowa Landscape Design** project to develop methodology for exploring tradeoffs potential tradeoffs of landscape designs across Compare & rank scenarios a supply shed area Select preferred option Document & share results Hypothetical results depicted Switchgrass **Corn Stover** VS. VS. VS. % of target achieved 100 50

0 Maximize Maximize Pheasant **Combined Goals** Minimize Nutrient Productivity Recovery Runoff

Nitrogent & Phosphorus Concentrations Cellulosic Biomass Profit Bird Counts

Desired Outcomes

26

- Enable users to integrate indicators of sustainability tailored to local conditions & stakeholder goals/priorities
- Sustainability quantification & visualization will help government & industry implement bioenergy systems that maximize potential benefits

6. Identify good practices

- Establish monitoring system
- Evaluate & communicate outcomes
- Implement & test strategies to enhance goal achievement

Project 'Go'/'No Go' Milestone (June 2020)

Is it feasible for users to enter their own projects into BioSTAR?

Thank you! Questions?

Publications related to ORNL's Bioenergy Sustainability research

ACKNOWLEDGMENTS

Funding for a portion of this research was provided by the US Department of Energy (DOE) under the Bioenergy Technologies Office (BETO). Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. Thanks to the many collaborators who have contributed to these studies.