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1. Introduction

A CFBC boiler power plant includes four main
parts which are the combustor, the boiler, the
turbine, and the generator system.

In this study, a nonlinear dynamic model for
drum-type boiler is developed.

To simulate water circle through the drum-type
boiler system

To simulate the heat transfer process from steam
to drum shell

To compute the stresses generating in metal wall
due to the thermal gradient inside the metal and
pressure.
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Figure 1. Schematic diagram of the circulating fluidize
bed combustion boiler power plant



There is a circulation fluid flow
loop through the components in
drum-boiler system

The heat transfers from hot steam
to wall and insulation.

Based on principle conservation
laws, the fluid dynamic model and
thermal model are combined to
establish the drum-type boiler
model.

Figure 3. Schematic picture of the

drum shell
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Figure 2. Schematic picture of the
drum-boiler system



2.1 Mathematical fluid model

= The mathematical model of natural circulation drum-boiler.

P - pressure of drum
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* The dynamic model is captured by mass and energy balance
equations of three sub-system which are:

1. The global mass and energy balances of whole system

2. The mass and energy balances of riser section

3. The mass balance of the steam under the water in the drum
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Figure 5. Fluid dynamics model



2.2 Mathematical thermal model

1. Assumptions

« Heat convection from the steam to the inside wall of the drum is neglected.

» The internal energy sources of the material are null.

» The ratio between the drum length and its diameter is assumed sufficiently high therefore the only
radial variation of the heat flux and temperature is considered.

2. Energy Balance
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Figure 7. Energy balance model for both

Figure 6. Energy balance model for single \ _
metal wall layer and insulation layer

uniform material layer



2.2.1 Discretized method

The models are solved by finite difference method (FDM) for both steady-state and transient
conditions using Matlab codes.
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Figure 8. The discretization of the drum’ shell

The metal wall is discretized by 18 even layers and the insulation cover is divided into 10 equal
cells.



2.2.2 Discretized energy balance equation

Based on the backward and forward for partial derivatives, the energy balance equation for
both metal wall and insulation is discretized by equations as follows
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2.3. Stress distribution Thermal stress distribution

Referenced by Kim, T. S., Lee, D. K., Ro, S. T., 2000,
Analysis of thermal stress evolution in the steam drum
during start-up of a heat recovery steam generator, Applied
Thermal Engineering, vol.20, pp. 977 — 992, 2000
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Figure 9. The thermal stress model of
metal drum wall

Tangential stress:
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Effective thermal stress can be calculated by von-Misses theory as

equation follows

1/2
— 2 2 2
Oeff—T = [GB—T + Or—T + Oz—1 — (GG—TGI‘—T + 09—TOz-T + Gr—TGz—T)]

Where:
Modulus of elasticity: E = 207 Gpa
Thermal expansion: a = 1.4.10¢ K-
Poisson’s ratio: v = 0.292



Mechanical stress distribution

The combine mechanical stresses and thermal stresses The mechanical stresses are caused by pressure
i Tangential stress: ri xP ro
Tangential stress: Og = Og_7+0g_p g © Og_p = (rZTZ) 1+ —2
o —Ti
; 2 2
Radial stress: 5 .o _H*P [ I
I . r-p —
Radial stress: O = Op_7+0,_p (7‘02 - ’riz) r
Longitudinal stress: ol_p=0
Longitudinal stress: 61 = 07 +0)p Effective mechanical stress can be calculated by

von-Misses theory as equation follows
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Effective stress can be calculated by von-Misses theory as equation follows
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2.4. Solution procedures
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Figure 10. The solution procedures of the drum-type boiler model




3. Simulation results
3.1. Step change
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3.1.1 A step change 10% value in heat addition flow rate.
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3.1.2 A step change 10% value in steam demand flow rate.
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3.1.3 A step change 10% value in feedwater flow rate.
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3.2 Start-up period

Operational data of 2MW drum-boiler
——Feedwater-kg/s ——Steam demand-kg/s ——Heat added-MW Steam pressure-Mpa

0 5000 10000 15000

Drum pressure (MPa)
N

Heat added (MW)
Feedwater and steam flow (kg/s)

Time (s)

The start-up period is from 18,000s to 35,000s



3.2.1. Fluid dynamics
3.1.1. The input data of 2 MW drum-boiler for start-up period

Heat added into the riser of drum-boiler for start-up period
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3.1.2. The simulation results of 2 MW drum-boiler during start-up period
Drum pressure

Comparison between experimental and simulation pressure

Experimental pressure e Simulation pressure
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There are a few differences from time 3,500s to 6,300s because this interval time the effect of the efficiency
of drum-boiler is the most pronounced.

In the interval time from 14,000s to 17,000s, there 1s a pretty good agreement between the model and
experimental data because the system reaches nearly stable operation.



Other simulation results for start-up period without validation
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3.2.2. Temperature distribution

Steam temperature
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Based on the simulation results in above section, the fluid dynamic sub-model, the
temperature history during start-up period 1s computed in order to examine the variation
of the temperatures and thermal stresses generated inside metal wall of steam drum.



Temperature distribution in both metal wall and insulation shell
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The outer insulation temperature is a boundary condition therefore with steam temperature is given in
above section. The temperature distribution in 18 layer of the metal wall and the temperature distribution
in 10 layer of the insulation shell are simulated and shown together in Figure.



Temperature distribution in the metal wall
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The temperature distribution in metal wall is shown in figure which indicate that during the steam
temperature increases the temperature in layer 1 is highest and the temperature in layer 18 is lowest and vice
versa for the steam temperature decreases process. These phenomena occurred because of the heat transfer
process between steam and metal wall.



3.2.3 Stresses distribution
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Because of the thermal gradient inside the metal wall, very high thermal stresses are originated. As shown
by figure, the simulation results indicate that the von Mises equivalent stresses reaches the maximum values
in the first metal layer which contact with the steam
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4. Conclusion

A mathematical drum-type boiler model was developed for simulating the drum-boiler
dynamics.

A thermal-stress sub-model of drum shell was developed for simulating the heat
transfer through the metal and the insulation of the drum steam.

A computation model of the thermal and mechanical stresses was proposed for
simulating the generated stresses distribution inside the metal drum wall.

The dynamics of 2MW CFBC boiler was simulated for start-up regimes by using such a
model.

The simulation result of steam pressure was validated against the experimental
measurement.

Other numerical results including total volume of water, steam quality at the top of the
riser, the volume of steam under the water, and the drum water level are also well
captured by the proposed modeling.
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