Universität für Bodenkultur Wien University of Natural Resources and Life Sciences, Vienna

Assessment of Combustion and Gasification Behaviour in Pilot Scale for Addidivated Biomass

Christoph Pfeifer

Department of Material Sciences and Process Engineering Institute of Chemical and Energy Engineering

> Fluidization XVI May 26-31, 2019 www.boku.ac.at

2 🖸 🗋 🖄 🚱 🚱 💋 📈 🖸 🗶 🖉 🖓

Difficulties during biomass storage

THE CHALLENGE

microbial degradation of wood chips annually loss amounting 10-40 % dry matter self-ignition of wood chip piles

Difficulties during biomass storage

How do overall conditions affect wood degradation?

particel size	coarse	fine
moisture content	< 30 %	> 30 %
green parts	low	high
fine material content	low	high
impurities	low	high

Inhibition by pH adjustment

Colony forming units of fungi at pH values of

- 5.6
- 9.0
- 10.0
- 11.0

DG18-Agar Incubation for 7 days

Which additives are suitable?

BOKU

Must-haves:

- increasing wood-pH to > 9.0
- cheap
- easy handling

Nice-to-haves:

- optimizing ash melting behaviour
- decreasing gaseous emissions during combustion such as chloride and SOx-emissions

Additives:

- dolomite CaMg(CO₃)₂
- calcite CaCO₃
- slaked lime Ca(OH)₂
- kaolin $Al_2Si_2O_5(OH)_4$
- natrium-carbonate Na₂CO₃

pH of poplar woodchips

additive concentrations regarding the dry matter

	$CaMg(CO_3)_2$	CaCO ₃	Ca(OH) ₂
Ref	6.5	6.5	6.5
1 %	6.7	8.3	11.1
2 %	7.3	8.5	11.6
4 %	7.9	8.6	12.1

Storage tests with addidivated biomass Respiratory tests in laboratory

Storage tests at combustion site

Ash melting challenge

BOKU %

Biomass ash agglomerates

Heat exchanger fouling

Source: Sulzbacher, L., 2015, PhD Thesis, University of Natural Resources and Life Sciences, Vienna.

Renewable energy consumption in major markets

CaCO ₃	Heart	wood	Ba	ark	Nee	dles	Mi>	ked
\a/t0/	DT	HT	DT	HT	DT	HT	DT	HT
VVI 70	°C	°C	°C	°C	°C	°C	°C	°C
0	1079	1460	1210	1420	1184	1490	1120	>1500
1	1142	1429	1236	1462	1262	>1500	1155	>1500
2	1084	1445	1276	>1500	1147	>1500	1072	>1500
4	1140	1450	1171	>1500	1218	>1500	1144	1467

Schematic illustration of 20kW BFB pilot plant

Materials

Bed material – silica sand			
Mean particle size	μm	615	
Density	kg/m³	2650	

Feedstock - spruce			
Water content	wt%	15	
Particle size	mm	20-50	
Biomass flow rate	kg/h	2.0	
Additive Ca(OH) ₂	wt%	0	4
HHV	MJ/kg	20.05	18.72
Ash content	wt%	0.64	4.45

Experimental set up

Experimental set up			
Bed height	cm	22	
Biomass flow rate	kg/h	2.0	
Air flow rate	kg/h	1.7-12.5	

Air	ER
flowrate	(-)
(kg/h)	
1.7	0.22
2.3	0.30
3.0	0.39
7.5	0.96
10.0	1.28
12.5	1.60

Pressure drop across the bed

Axial temperature distribution

Mole fraction of carbon monoxide and methane

Mole fraction of carbon nitrogen and oxygen

Summary and conclusions

- Additives created agglomerations
- Gasification reactions slightly enhanced (CaO)
- Combustion limited with additives
- Further tests needed with stored biomass

Funding is gratefully acknowledged: FFG, Klima- und Energiefonds Proj.nr. 858837

Univ.Prof. Dr. Christoph Pfeifer Muthgasse 107 A-1190 Vienna, Austria

Tel: (+43) 1 / 47654 89351 christoph.pfeifer@boku.ac.at www.boku.ac.at

🔀 🔁 📓 🐼 🙆 🐼 🙆 🛃 💽 😭