

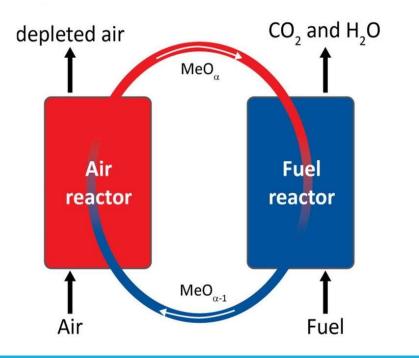
lstituto di Ricerche sulla Combustione Consiglio Nazionale delle Ricerche

Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale Università degli Studi di Napoli Federico II

Production and Stability Assessment of Oxygen Carrier Produced By Sewage Sludge Fluidized Bed Combustion

Antonio Coppola

Università degli Studi di Napoli Federico II, DICMaPI- Napoli (Italy)


Giovanna Ruoppolo, Massimo Urciuolo, Riccardo Chirone

Consiglio Nazionale delle Ricerche, IRC – Napoli (Italy)

Introduction: Chemical Looping Combustion

The Chemical Looping Combustion is an innovative technology that allows to burn fuel avoiding the direct contact between it and the oxygen of the air. The process is based on the use of an Oxygen Carrier (OC, typically a metal oxide) to transfer oxygen from the air to the fuel, allowing the formation of burnt gases free of nitrogen and therefore composed mainly of carbon dioxide (concentrated) and water (separable).

Fuel Reactor

 $(2n+m)Me_xO_{y(s)} + C_nH_{2m} \rightarrow (2n+m)Me_xO_{y-1(s)} + mH_2O + nCO_2$

Air Reactor

$$(2n+m)Me_{x}O_{y-1(s)} + \left(n+\frac{m}{2}\right)O_{2} \rightarrow (2n+m)Me_{x}O_{y(s)}$$

Properties required of oxygen carriers:

AIChE

• High reactivity

- Low environmental impact
- High oxygen transport
- High mechanical strength

Guilin Shangri-La Hotel

Low costs

Introduction: Oxygen Carrier

Typical values of R_o, oxygen ratio (oxygen transport capacity)

- Fe-based OC, *R*₀=0.045
- Cu-based OC, *R*₀=0.089
- Ni-based OC, *R*₀=0.091

$R_o = \frac{m_o - m_r}{m_o}$

What are the limits?

- High carrier cost
- Carrier preparation method

Test a low-cost OC by re-using sewage sludge, and evaluate performance in a Chemical Looping Combustion process. The OC was prepared by combustion of sludge in a fluidized bed, and deposition of the ashes on a support of γ -Alumina (Al₂O₃).

31, 2019 Guilin Shangri-La Hotel

Aim of the work

- > The metals (Fe, Ca, Mn) present in sewage sludge ash have been deposited during sewage sludge fluidized bed combustion on γ -alumina which is characterized by high mechanical resistance and it was used as bed material.
- Three different combustion tests have been carried out in a 41 mm ID reactor adopting different operative conditions: the fluidization velocity and the particle size, in order to find optimal conditions for the preparation of the OCs.
- > The oxygen carriers has been tested in reduction/oxidation tests using methane as fuel.
- The performance of the prepared OCs have been performed using a lab-scale fluidized bed apparatus properly designed for the study of chemical looping processes as close as possible to reality, in terms of cycling of temperatures and of reaction atmospheres.
- The samples have been characterized by TPR analysis, carrying out reduction tests with a mixture of 2% H₂/Ar, and a temperature ramp of 10°C/min up to 850°C.

AIChF

Materials

Inorganic elemental analysis of sewage sludge (as received), mg/kg

Proximate ar	nalysis	Elementar analysis (dry basis)		
Moisture	12,2	Carbon	39,4	
Fixed carbon	57,4	Hydrogen	5,6	
Volatiles	9,3	Nitrogen	6,7	
Ash	21,2	Sulfur	0,8	
		Chlorine	0,7	
		Oxygen	22,7	
		Ash	24,1	
Higher he	13484			
Lower he	12135			

Chemical composition

	%		ррт		ррт
AI	0,694	Ba	130	Ni	68
Ca	1,378	В	55	Se	3
Fe	2,671	Cr	81	Sr	70
Mg	0,360	Со	4	Sn	18
Р	1,496	Cu	294	Ti	202
K	0,202	Pb	69	Tl	0,03
Si	0,255	Mn	247	V	15
Na	0,043	Hg	3	Zr	3
Zn	0,059	Мо	6		

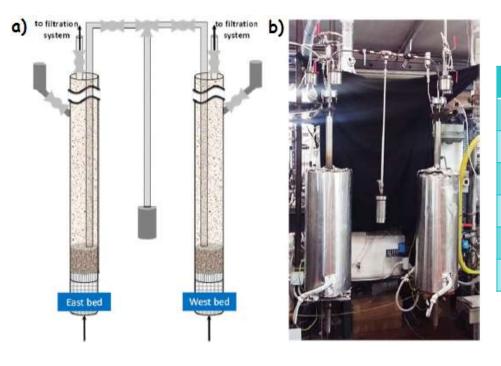
Experimental Combustion tests

1ay 26 - 31, 2019 | Guilin Shangri-La Hotel | Guilin, Ch

The experiment was carried out in a bubbling fluidised bed reactor in laboratory scale employing air as fluidization gas, using the sludge as fuel and alumina as an inert material bed.

Operative conditions	Test 1	Test 2	Test 3
Temperature [°C]	850	850	850
U _{gas} [m/s]	0.47	0.6	0.6
<d> alumina bed [µm]</d>	1000	1000	400–600
Feed [g/h]	100	120	120
Bed weight [g]	180	180	180

Each test was approximately carried out for 3 hours. Three samples were taken, in order to evaluate the effect of time on the degree of covering sludge / alumina ashes

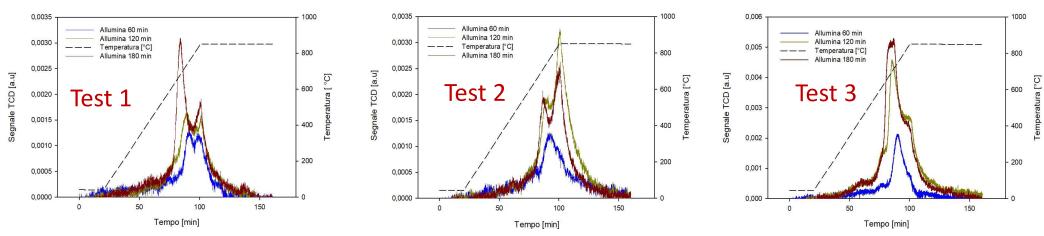


Experimental :CLC tests

TWIN BEDS Apparatus

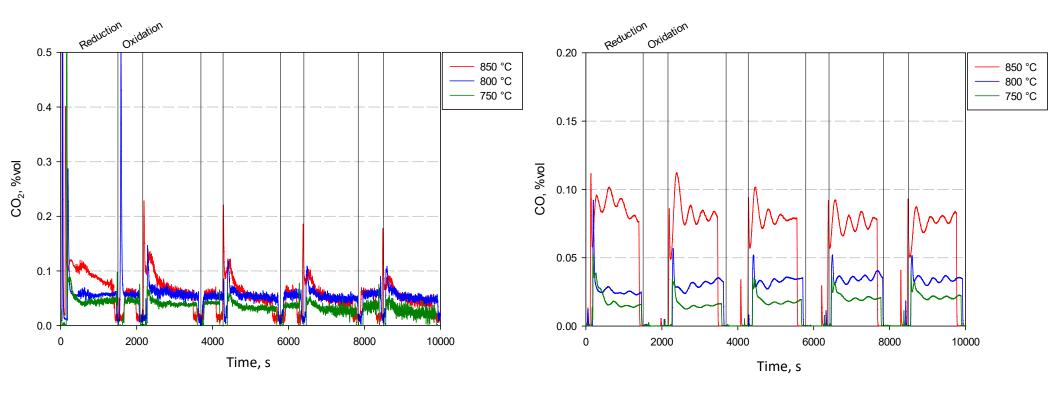
	Air Reactor	Fuel Reactor		
<i>T</i> , °C	850	750/800/850		
<i>Q</i> , NL/h	617 677/646/617			
<i>U</i> , m/s	0.5			
Fluidization Gas	Air	2%vol CH ₄ /N ₂		
Reduction/Oxdidation cycles	5			
Time, min	10	25		

Experimental: TPR analysis and reduction/oxidation cycles


Micromeritics Autochem II TPD/TPR analyzer 110 mg OC **2% H₂/Ar mixture** (50 Ncm³ min⁻¹) 10 °C min⁻¹ up to **850 °C**. 1 h in air (50 Ncm³ min⁻¹) at 850 °C before the experiment.

The samples have been characterized by TPR (temperature programmed reduction) analysis, to study the reactivity of the carriers and to evaluate the amount of reducible material deposited on the support.

Results Combustion tests

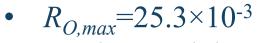

	60 min		120 min		180 min	
	µmol H ₂	mg H ₂ /g _c	µmol H ₂	mg H ₂ /g _c	µmol H ₂	mg H ₂ /g _c
Test 1	7.26	0.13	10.17	0.19	13.46	0.26
Test 2	8.67	0.16	16.41	0.30	12.88	0.24
Test 3	7.47	0.13	23.61	0.38	24.11	0.43

 $\rightarrow R_0 = 3.4 \times 10^{-3}$

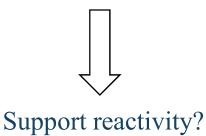
Results CLC tests

The reactivity of the OC increases with temperature and decreases as the number of cycles growths.

AIChE


May 26 - 31, 2019

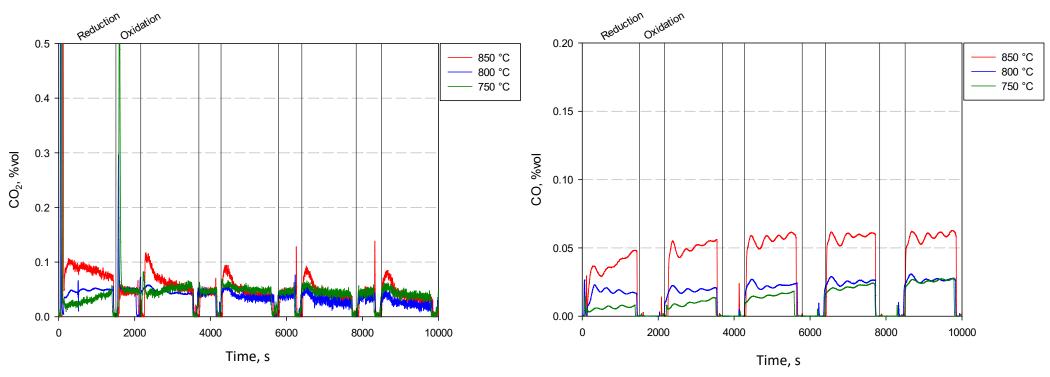
Guilin Shangri-La Hotel Guilin, Chir



Results CLC tests

Т	Cycle	CH ₄ conversion	mmol O/	mmol CO/	mmol CO ₂ /
Fuel Reactor	Cycle	degree, %	g OC	g OC	g OC
	1	10.0	1.582	0.237	0.218
	2	8.3	1.282	0.226	0.151
850°C	3	8.3	1.163	0.217	0.128
	4	8.8	1.040	0.202	0.109
	5	10.1	1.107	0.198	0.128
	1	10.4	0.713	0.071	0.125
800°C	2	5.9	0.596	0.085	0.085
	3	8.6	0.753	0.090	0.121
	4	7.4	0.746	0.095	0.115
	5	8.7	0.785	0.092	0.127
	1	3.8	0.285	0.045	0.037
750°C	2	4.1	0.654	0.048	0.127
	3	4.0	0.603	0.057	0.108
	4	3.9	0.581	0.065	0.096
	5	5.0	0.531	0.067	0.083

• Fresh material: 4.5×10^{-3}

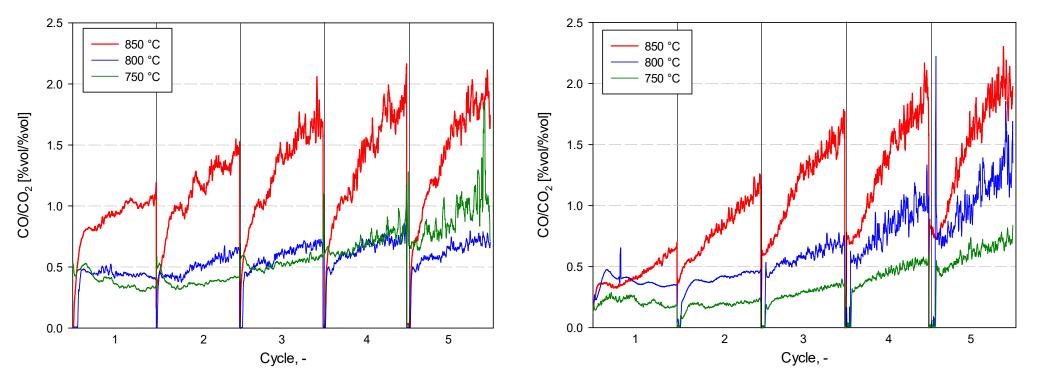


May 26 - 31, 2019 | Guilin Shangri-La Hotel | Guilin, Chir

Results CLC tests

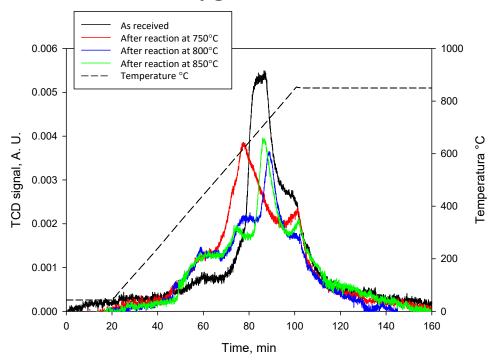
Results (using the support only)

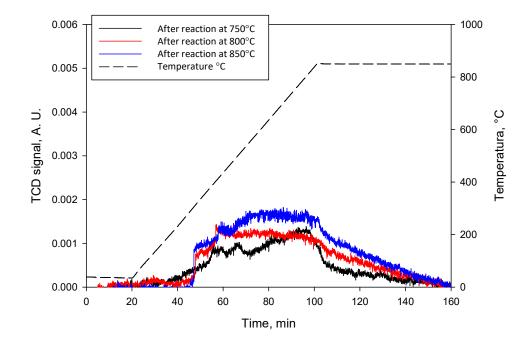
Alumina reactivity increases with the temperature increase and with increasing the number of cycles.


AIChE

Results :CLC tests

Oxygen Carrier




Results :CLC tests

Oxygen Carrier

The material undergoes structural changes

Alumina

Unchanged profile

Conclusions

Sewage sludge fluidized bed combustion can be considered a feasible and reliable strategy for the preparation of low-cost CLC oxygen carriers.

The reactivity of the OC increases with temperature increase and decreases with the number of cycles

 R_0 ,max=25.4×10⁻³, lower than the values reported in the literature \rightarrow it is necessary to improve the deposition process.

AIChE

From the TPR analysis we note that the material undergoes structural changes following the looping process.

Istituto di Ricerche sulla Combustione Consiglio Nazionale delle Ricerche

Ma

Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale Università degli Studi di Napoli Federico II

Thank you for your kind attention

