

Fluidization XVI conference

Combustion behavior of high ash bituminous coal in a pilot scale circulating fluidized bed rig

Y. Sarbassov, K. Suleimenov, B. Aiymbetov, B. Saparov, VJ. Inglezakis, EJ Anthony

Presenter: Yerbol Sarbassov, PhD, E-mail: <u>ysarbassov@nu.edu.kz</u> Postdoctoral Scholar, Chemical & Materials Engineering Department School of Engineering, Nazarbayev University

Guilin, 25-31 May 2019

Content

- Introduction
- Aims and objectives
- Experimental CFB set up
- Preliminary results, NOx, SOx emissions
- Pressure drop profiles
- Ash composition
- Summary
- Acknowledgements

Why important

- Huge amount of residual ash (bottom ash) being landfilled around the country;
- Reduction of NOx and SOx emissions due to the low temperature combustion;
- Mitigation of CO₂ emissions;

Energy balance of Kazakhstan, 2016

CO₂ emissions of Kazakhstan from coal combustion (IEA-2018)

Objectives

- Combustion behaviour of high ash coal in fluidized beds;
- Ash build up investigation in the dense zone;
- NOx and SOx emissions;
- Residual ash analysis by XRF;

Experimental setup: pilot-scale CFB rig

Height of riser: 5300 mm; Internal diameter: 180 mm;

Experimental conditions:

- Fuel feeding rate: 18 20 kg/hr;
- Combustion temperature: 870-900°C
- Superficial gas velocity, U/Umf: 3.3–3.8

Preliminary results: Complete combustion, NOx, SO₂ emissions

Coal particles			
PSD of coal, mm		0-8	
Fine fraction <1mm	0.4-0.47		
Bed material (sand)	PSD	Weight	
Riser	1 – 4 mm	6 kg	
Loop-seal 1	0.2 – 1 mm	9 kg	
Loop-seal 2	0.2 – 1 mm	9 kg	

Proximate analysis (%)		
Moisture	2.1	
Volatile matter	19.9	
Fixed carbon	39.3	
Ash	38.5	
Ultimate analysis (%)		
С	61.2	
Н	3.5	
Ν	2.1	
S	0.7	
0	32.4	
GCV, MJ/kg	19.4	

Preliminary results: Pressure drop vs time

Ash composition

Conclusions

- Preliminary results has showed that ash particles are carried away at higher gas velocities (CFB conditions);
- Combustion temperature of CFB were stable and kept between 870-900°C;
- Based on PSD analysis of residuals, <u>attrition of ash particles</u> could be the main reason for the loss of ash material;
- Further experimental campaigns are needed to understand ash formation mechanisms in a bench scale unit;

Acknowledgements

Authors would like to thank Nazarbayev University for the financial support under internal research project (ORAU project number: 284-2019/012-2019);

Thank you for your attention!