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Detailed modelling of cyclones

Requirements for cyclone modelling — e (C)Eras outlet
= Capture gas-solid complex swirling flow ' b,
= Model particle-wall and particle-particle collisions to obtain solids — S N
accumulation and descent = 3. Saparaiien
. . . . . .. P space
= Consider particle pickup by the upflowing vortex (inefficiency) ¢ 3 of
- K cyclone
= Take polydispersion into account 7 body
Dust - :
outlet %

==

DEM is attractive for its ability to provide detailed and good collision
representation. DEM-CFD applied to large particle DMC (Chu et al., 2016)

For the industrial scale, e.g. 1 m barrel diameter, 15 m/s inlet velocity,
0.2%vol loading of 100 um particles:
No. of particles/sec ~10° + 101° (UNFEASIBLE)

= AIM: Explore whether coarse-grain DEM can be a solution

Chu K., Chen 1., Yu A.B., Min. Eng. (2016)
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Modelling fluid-particle flow using DEM-CFD

Lagrangian discrete elements (DEM) rock

Hertz-Mindlin contact

@

solids
(+gas)

ml dt 2fc1]+fdl+fbl+fgl
da)l
ldt ZTCLJ

Eulerian local-average Navier-Stokes (CFD)

Di Felice drag model

de
apf +V-(epsu) =0
Depru
D = —Vp+V-t+Fp, +eprg

Frp, = —ézi(fa,i +fbi)
IV X pem -+ ownimplementations

v.18.1.5 lid
http://mfix.netl.doe.gov/mfix/ SONas
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Coarse-grain methodology

= Principle of CG-DEM:
DEM particles lumped into f times bigger, representative computational grains (parcels)

= Concept: still discrete entities with scaled, equivalent properties.

= Preservation of total gravitational and fluid-particle force, ““
of translational and rotational kinetic energy before/after i “‘ | | @ |
collisions, including dissipation. “‘ ’ i - |
= Original derivations (but many subsequent users) i “"5 @ |
| DEM : | CGM |
2 B e
Kuwagi et al. (2004) “Similar particle assembly” Fixed and fluidized beds of free and Particles in a CFD cell Grains (parcels) in the
(SPA) cohesive particles same cell
Sakai and Koshizuka (2009) Coarse-graining based on Pneumatic conveying — linear contact
energy preservation model
Bierwisch et al. (2009) Coarse-graining based on stress  Cohesive powder flow in cavity filling —
and energy preservation Hertz with cohesion (JKR-like) model Kuwagi, Takeda & Horio, Fluidization XI (2004)
Sakai & Koshizuka Chem. Eng. Sci. (2009)
Hilton and Cleary (2012) Similar to SPA with rotation by Bubbling fluidized beds Bierwisch et al. J. Mech. Phys. Sol. (2009)
Sakai Hilton & Cleary, 9 Int. Conf. CFD in Min. Proc. Ind. (2012)
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Modelling using coarse-grain DEM-CFD

Advantages

= Highly reduced computational cost
= The total number of particles depends on the cubic power of the grain-to-particle size ratio
= Also, the contact time (limiting the integration time step) scales positively

g5

= Reported overall speed-up of 0 (d ) for the linear 1000

P

4
contact model and 0 (Z—G ) for Hertz-based model.

P Linear

100
Hertz

= Still detailed results

10¢F

Theoretical speed-up

Disadvantages
= Loss of fidelity (to be quantified) 1 16 2 25 3 35 4

Grain-to-particle size ratio

= Need for sub-grain corrections?

=5 UNIVERSITADELLACALABRIA



Modelling cyclones flow using DEM-CFD

Fluid flow limited by grid resolution:

Compressible, no turbulence (but gas-particle interaction accounts for high-Re flows)

Complex geometry: R
T
o AT s PR I T
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. 4 :‘:E
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v /','/.,o" - < “EEER 08 30)e8 5 i 02
gres ~EREE 4 oY
> X X s R
2 = S 7
Cartesian cut-cell technique (113k cells)

Particle contacts with triangulated for the gas phase flow
surface (STL)
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Testing the coarse-grain DEM-CFD on cyclone

' Pressure
0.5D¢ outlet P=0

}«

Simulated lab-scale tangential (Stairmand HE) design
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Tangential inlet (width x heigth) 18 x 45 mm (0.2D x 0.5D) \E[]t@‘_
Grid size (diameter x height) 2.5x3 mm pc| [+50c L 4 .
Particle properties D =500 um, p = 2500 kg m3 1 y ;gl'f'rfli
Contact model Hertz, E = 5-107 Pa, e,, = 0.9 V, ¢
Solids loading (%vol) 0.1%, 0.2%, 0.5%, 1% .
Inlet velocities 10, 14, 20 m/s ﬁ(?,')',‘ié?“g / 230
diameter D

Particle or grain size, d [um] 500 1000 1500 2000 , v
Particles per grain, NPG [-] 1 8 27 64 V03750, o=l

! (DEM) walls

. L . Cyclone design
Grain-to-particle size ratio 1 2 3 4
Holdup in number of grains, [-] 136k—-717k | 11k-94k | 6k—25k 2.8k-10.6k
Boundary

Solid-phase time-step, At, [10°¢ s] 0.6 1.9 3.1 4.1 conditions
Fluid-phase (typical) time-step 5-10%s 3 OE;ZT;‘L:O




CFD of single-phase fluid flow inside the cyclone

Flow properties at u,.; = 14 m/s

Axial velocity Tangential velocity . \Fj h
8, ] |
: LU | e
2 l
| l UQU

Axial velocity (Uy), [m/s]
o

e B

0 0.0050.010.0150.020.0250.03 0.0350.04 0.04!
Length along the radius, (m)

soun |-
U, [m/s] Mﬁiﬁiagew MY : .

Uy [m/s] 1
8.9 ‘' 14.7 . g L
8.0 £ 7 v | o -
= 1 12.0 . ' |
6.0 o~
P[:] (; 10.0 YBSSB e ‘ ‘
L 4.0 > 80 ]
£ o — 6.0 . \ |
] ' \ \ h
— 2.0 T -3 _ 4.0 : b
> 4 |
0.0 T — 20 - :
e S 5
c — 0.0
(] -6/
o -2.0 = -2.0
> 2z 40 e 75 0.0050.010.0150.02 0.025 0.03 0.035 0.04 0.04! ¢ 4.0 Cyclone theory
Length along the radius, (m) 6.0
6.0 Trefz & Muschelknautz, CET, 1993
71 No Uyr™ =c! 9.0 P ==
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Analysis of the physical features of the flow

Vortex shape and length Gas-solid flow
— -
DEM (NPG=1)

& = 0.5%
Uip, = 14 m/s

Strand formation at ~15°

Number of turns

I e o

&Y

0 10 20 a0 a0 50 60
V, Maximum Velocity, m/s

x ¥

Knowlton, Chap. 22, Handbook Fl. & F-P systems (2003)
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Two-phase flow dynamics

. ) ) Time: 0.600 s
In the simulations, fluid and

particle motions are tracked,
with special attention to
solids separation

DEM (NPG =1)
& =1%
Uin = 14 m/s

Starting from approximately 0.6 s the
cyclone operates steadily
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Effect of the coarse graining degree: macro-scale

Loading &, = 0.5%

Pressure drop Vortex length
160 4.5
e o ° °
140 e® ° a 4.0
. 3
-
— 120 e 535
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~ 100 =
S 25 ° o o o
8 80 ®uin- S o ® uin-
v b . ° uin=10 m/s : 50 ° ° o uin=10 m/s
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7,3 4=
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e 40 ° L ® £ 10
&n .
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0 0.0
0 20 40 60 80 0 20 40 60 80
Number of particles per grain, NPG Number of particles per grain, NPG
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Effect of the coarse graining degree: macro-scale

Overall separation efficiency

Loading &, = 0.2% Loading £, = 0.5%
100.0% 100.0%
° ® yin=10m/s ' [ ] ° ‘
99 8% . ‘ L] uin =14 m/S 99_8% .
® ® yin=20m/s [ ) PY
[ )
9.6% o o 99.6% .
> >
2 o ¢ 2
£ 99.4% ° g 99.4% e
£ by
99.2% b 99.2%
. .
99.0% 99.0% ® uin=10m/s
[ J ® uin=14m/s
98.8% 98.8% ® uin =20m/s
0 20 40 60 80 0 20 40 60 80

Number of particles per grain, NPG Number of particles per grain, NPG
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Effect of the coarse graining degree: gas flow

& =05%, U,, =14m/s

Tangential velocity Axial velocity
Uy [m/s]

LR

NPG =1 NPG =1
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Time: 0.604 s

Expected possible applications

Running test on 9-cm dia. cyclone flow of
125 um diameter particles
with CG factor f =4 (NPG = 64).

& = 0.1%
Uiy, = 14 m/s

Steady-state solids holdup of 78600 grains
corresponding to >5M particles.

Simulation time was 9 h / simulated s
on 32 cores of our cluster.
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Conclusions

= Cyclones on the large scale or treating very fine particles is prohibitive for reasonable
DEM-CFD simulations due to the number of particles and the small time-step.

= Coarse graining DEM particles provides speedup with the grain-to-particle size ratio to
the power of 4 or 4.5, thereby appearing highly attractive.

= QOur simulations showed that the physics into the coarse graining method (scaling
parameters) is sufficient to guarantee preservation of macroscopic variables -
compared to pure DEM - up to CG factor f = 3 (NPG=27). However, in one case the
solids flow field appeared deeply modified (no strands) already at f = 3, denoting
profound differences in the microdynamics of the particles/grains.

= Qverall: in DEM-CFD models of cyclones there is a huge potential in CPU-time savings
but reasonable accuracy is obtained below f = 3, further development and testing at
f = 3 and beyond is required.
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Perspectives

Most important challenges and open problems in CG:
= Fully characterize grain-grain collision and grain-wall collisions
= Develop and test CG parameter rules for rolling friction

= Further test the coarse graining degree to identify limits of applicability and assess
how well quantities of interest are preserved

= Develop and test a reliable CG method for polydisperse solids, possibly with reaction
and heat/mass transfer
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